Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Machine Learning Strategies for Type 2 Diabetes Classification
Details
The rise in Type 2 Diabetes cases has fueled research in robust diagnostic systems. Machine learning integration enhances these systems by analyzing diverse datasets and addressing associated complications like obesity, poor habits, and hypertension. Early detection is crucial, given the severe health implications. ML, paired with natural language processing, aids in prognosis, diagnosis, and prevention plans. Using the PIDD dataset (768 samples, 16 attributes), this research focuses on predicting diabetes with an expanded characteristic set. Pre-processing involves normalization, balancing with SMOTE, and completeness checks to improve model accuracy. Overall, this study emphasizes ML's pivotal role in advancing Type 2 Diabetes understanding and predictive capabilities through meticulous methodologies and dataset selection.
Autorentext
Dr.M.S.Roobini, Professor Associado, Departamento de Informática e Engenharia no Instituto de Ciência e Tecnologia de Sathyabama.A Sra. V.Gowri Manohari e a Sra. M.Gowri trabalham como Professor Assistente, Departamento de Informática e Engenharia, Instituto de Ciência e Tecnologia de Sathyabama.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786207447671
- Herausgeber LAP LAMBERT Academic Publishing
- Anzahl Seiten 64
- Genre Software
- Sprache Englisch
- Gewicht 113g
- Untertitel A monograph
- Autor M. S. Roobini , C. A. Daphine Desona Clemency , Aishwarya D.
- Größe H220mm x B150mm x T4mm
- Jahr 2023
- EAN 9786207447671
- Format Kartonierter Einband
- ISBN 6207447670
- Veröffentlichung 22.11.2023
- Titel Machine Learning Strategies for Type 2 Diabetes Classification