Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Machine Learning under Malware Attack
Details
Machine learning has become key in supporting decision-making processes across a wide array of applications, ranging from autonomous vehicles to malware detection. However, while highly accurate, these algorithms have been shown to exhibit vulnerabilities, in which they could be deceived to return preferred predictions. Therefore, carefully crafted adversarial objects may impact the trust of machine learning systems compromising the reliability of their predictions, irrespective of the field in which they are deployed. The goal of this book is to improve the understanding of adversarial attacks, particularly in the malware context, and leverage the knowledge to explore defenses against adaptive adversaries. Furthermore, to study systemic weaknesses that can improve the resilience of machine learning models.
Autorentext
Raphael Labaca-Castro is a computer scientist whose primary interests lie in the nexus between Machine Learning and Computer Security. He holds a PhD in Adversarial Machine Learning and currently leads an ML team in the quantum security field.
Inhalt
The Beginnings of Adversarial ML.- Framework for Adversarial Malware Evaluation.- Problem-Space Attacks.- Feature-Space Attacks.- Closing Remarks.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783658404413
- Genre Information Technology
- Auflage 1st ed. 2023
- Lesemotiv Verstehen
- Anzahl Seiten 116
- Größe H8mm x B148mm x T210mm
- Jahr 2023
- EAN 9783658404413
- Format Kartonierter Einband
- ISBN 978-3-658-40441-3
- Titel Machine Learning under Malware Attack
- Autor Raphael Labaca-Castro
- Herausgeber Springer Vieweg
- Sprache Englisch