Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Machine Translation
Details
This book constitutes the refereed proceedings of the 13th China Workshop on Machine Translation, CWMT 2017, held in Dalian, China, in September 2017.
The 10 papers presented in this volume were carefully reviewed and selected from 26 submissions and focus on all aspects of machine translation, including preprocessing, neural machine translation models, hybrid model, evaluation method, and post-editing.
Includes supplementary material: sn.pub/extras
Inhalt
Neural Machine Translation with Phrasal Attention.- Singleton Detection for Coreference Resolution via Multi-window and Multi-Filter CNN.- A Method of Unknown Words Processing for Neural Machine Translation Using HowNet.- Word, Subword or Character? An Empirical Study of Granularity in Chinese-English NMT.- An Unknown Word Processing Method in NMT by Integrating Syntactic Structure and Semantic Concept.- RGraph: Generating Reference Graphs for Better Machine Translation Evaluation.- ENTF: An Entropy-based MT Evaluation Metric.- Translation Oriented Sentence Level Collocation Identification and Extraction.- Combining Domain Knowledge and Deep Learning Makes NMT More Adaptive.- Handling Many-To-One UNK Translation for Neural Machine Translation.- A Content-based Neural Reordering Model for Statistical Machine Translation.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09789811071331
- Genre Information Technology
- Auflage 2017 edition
- Editor Derek F. Wong, Deyi Xiong
- Lesemotiv Verstehen
- Anzahl Seiten 125
- Größe H235mm x B155mm x T12mm
- Jahr 2017
- EAN 9789811071331
- Format Kartonierter Einband
- ISBN 978-981-10-7133-1
- Veröffentlichung 14.11.2017
- Titel Machine Translation
- Untertitel 13th China Workshop, CWMT 2017, Dalian, China, September 27-29, 2017, Revised Selected Papers
- Gewicht 2234g
- Herausgeber Springer-Verlag GmbH
- Sprache Englisch