Management of Complex Multi-reservoir Water Distribution Systems using Advanced Control Theoretic Tools and Techniques
Details
This book uses advanced sophisticated modeling tools to decribe optimal water management in a complex distribution system using retention reservoirs, among which water transfers are possible, and a network connecting reservoirs and water treatment plants.
This study discusses issues of optimal water management in a complex distribution system. The main elements of the water-management system under consideration are retention reservoirs, among which water transfers are possible, and a network of connections between these reservoirs and water treatment plants (WTPs). System operation optimisation involves determining the proper water transport routes and their flow volumes from the
retention reservoirs to the WTPs, and the volumes of possible transfers among the reservoirs, taking into account transport-related delays for inflows, outflows and water transfers in the system. Total system operation costs defined by an assumed quality coefficient should be minimal. An analytical solution of the optimisation task so
formulated has been obtained as a result of using Pontryagin's maximum principle with reference to the quality coefficient assumed. Stable start and end conditions in reservoir state trajectories have been assumed. The researchers have taken into account cases of steady and transient optimisation duration. The solutions obtained
have enabled the creation of computer models simulating system operation. In future, an analysis of the results obtained may affect decisions supporting the control of currently existing water-management systems.
Presents solutions for a number of optimization tasks, based on which control algorithms are developed for outflows from reservoirs for complex water management systems Discusses optimal water management in a distribution system using advanced control methods Shows that classical control methods enriched with fuzzy logic algorithms improve the effectiveness of control of complex inter-reservoir water systems Written by an expert in the field Includes supplementary material: sn.pub/extras
Inhalt
Steady Boundary Conditions in the Trajectories of States for Optimal Management of Complex Multi-Reservoir Water Distribution System.- Related Boundary Conditions in the Trajectories of States for Optimal Management of Complex Multi-Reservoir Water Distribution System.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319002385
- Auflage 2013
- Sprache Englisch
- Genre Allgemeines & Lexika
- Lesemotiv Verstehen
- Größe H235mm x B155mm x T6mm
- Jahr 2013
- EAN 9783319002385
- Format Kartonierter Einband
- ISBN 3319002384
- Veröffentlichung 10.07.2013
- Titel Management of Complex Multi-reservoir Water Distribution Systems using Advanced Control Theoretic Tools and Techniques
- Autor Wojciech Z. Chmielowski
- Untertitel SpringerBriefs in Applied Sciences and Technology - SpringerBriefs in Computatio
- Gewicht 154g
- Herausgeber Springer International Publishing
- Anzahl Seiten 92