Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Mastering Organizational Dynamics Using Process Mining
Details
This book is a revised version of the PhD dissertation written by the author at Queensland University of Technology.
It presents research in the field of process mining, with a focus of developing data-driven methods to discover insights about human resources and their groups in an organizational business process context. It provides an overview on mining organizational models from event logs and introduces a set of novel ideas, framework, and approaches proposed to enhance the state-of-the-art. The book is suitable for researchers and practitioners in the fields of business process management and process mining.
In 2024, the PhD dissertation won the BPM Dissertation Award, granted to outstanding PhD theses in the field of Business Process Management.
Won the BPM 2024 PhD award for an outstanding theses in the field of business process management Presents an overview of mining organizational models from event logs Focuses on data-driven methods to discover insights about human resources and groups in business processes
Autorentext
Jing Roy Yang is a postdoctoral research fellow at Queensland University of Technology (QUT), Australia. His research focuses on discovering knowledge from process execution data to support improved decision-making, especially knowledge about (human) resources, and process automation.
Inhalt
1 Introduction.- 1.1 Process Mining.- 1.2 Mining Organizational Models from Event Logs.- 1.3 Outlook.- 2 Framework for Organizational Model Mining.- 2.1 Preliminaries.- 2.2 Execution Context.- 2.3 Organizational Model.- 2.4 Discovering Organizational Models.- 2.5 Evaluating Organizational Models.- 2.5.1 Fitness.- 2.5.2 Precision.- 2.6 Analyzing Organizational Models.- 2.7 Discussion.- 3 Learning Execution Contexts.- 3.1 Preliminaries.- 3.2 Problem Modeling.- 3.2.1 Categorization Rules.- 3.2.2 Quality Measures for Execution Contexts.- 3.2.3 Problem Statement.- 3.3 Problem Solution.- 3.3.1 Deriving Attribute Specification.- 3.3.2 Inducing Rules via Simulated Annealing.- 3.4 Evaluation.- 3.4.1 Event Log Datasets.- 3.4.2 Experiment Setup.- 3.4.3 Evaluation against the Baselines.- 3.4.4 Evaluation between tree-based and SA-based.- 3.4.5 Summary.- 3.5 Discussion.- 4 Discovering Organizational Models.- 4.1 A Three-Phased Discovery Approach.- 4.1.1 Determining Execution Contexts.- 4.1.2 Discovering Resource Grouping.- 4.1.3 Profiling Resource Groups.- 4.2 Implementation.- 4.3 Evaluation.- 4.3.1 Experiment Setup.- 4.3.2 Model Evaluation and Comparison.- 4.3.3 Model Diagnosis.- 4.3.4 Summary.- 4.4 Discussion.- 5 Applying Organizational Models to Workforce Analytics.- 5.1 Preliminaries.- 5.2 Resource Group Work Profiles.- 5.2.1 Work Profile Indicators.- 5.2.2 Extracting and Analyzing Work Profiles.- 5.3 Case Study: One Process, Five Municipalities.- 5.3.1 Group-level Analysis.- 5.3.2 Within-Group Analysis.- 5.3.3 Summary.- 5.4 Discussion.- 6 Epilogue.- 6.1 Conclusions.- 6.2 Future Work.- References.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783031935299
- Herausgeber Springer
- Anzahl Seiten 124
- Lesemotiv Verstehen
- Genre Software
- Sprache Englisch
- Gewicht 201g
- Untertitel Lecture Notes in Business Information Processing 552
- Autor Roy Jing Yang
- Größe H235mm x B155mm x T8mm
- Jahr 2025
- EAN 9783031935299
- Format Kartonierter Einband
- ISBN 3031935292
- Veröffentlichung 26.08.2025
- Titel Mastering Organizational Dynamics Using Process Mining