Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Mathematical Tools for Data Mining
Details
Data mining essentially relies on several mathematical disciplines, many of which are presented in this second edition of this book. Topics include partially ordered sets, combinatorics, general topology, metric spaces, linear spaces, graph theory. To motivate the reader a significant number of applications of these mathematical tools are included ranging from association rules, clustering algorithms, classification, data constraints, logical data analysis, etc. The book is intended as a reference for researchers and graduate students. The current edition is a significant expansion of the first edition. We strived to make the book self-contained and only a general knowledge of mathematics is required. More than 700 exercises are included and they form an integral part of the material. Many exercises are in reality supplemental material and their solutions are included.
Focuses on mathematical topics of immediate interest to data mining and machine learning The mathematics is illustrated by significant applications ranging from association rules, clustering algorithms, classification, data constraints, logical data analysis, etc Includes more than 700 exercises and solutions Includes supplementary material: sn.pub/extras
Inhalt
Sets, Relations and Functions.- Partially Ordered Sets.- Combinatorics.- Topologies and Measures.- Linear Spaces.- Norms and Inner Products.- Spectral Properties of Matrices.- Metric Spaces Topologies and Measures.- Convex Sets and Convex Functions.- Graphs and Matrices.- Lattices and Boolean Algebras.- Applications to Databases and Data Mining.- Frequent Item Sets and Association Rules.- Special Metrics.- Dimensions of Metric Spaces.- Clustering.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09781447171348
- Genre Information Technology
- Auflage Softcover reprint of the original 2nd edition 2014
- Lesemotiv Verstehen
- Anzahl Seiten 844
- Größe H235mm x B155mm x T45mm
- Jahr 2016
- EAN 9781447171348
- Format Kartonierter Einband
- ISBN 1447171349
- Veröffentlichung 03.09.2016
- Titel Mathematical Tools for Data Mining
- Autor Chabane Djeraba , Dan A. Simovici
- Untertitel Set Theory, Partial Orders, Combinatorics
- Gewicht 1253g
- Herausgeber Springer London
- Sprache Englisch