Mathematics of Aperiodic Order

CHF 176.00
Auf Lager
SKU
MAHK8A71BS8
Stock 1 Verfügbar
Geliefert zwischen Do., 29.01.2026 und Fr., 30.01.2026

Details

What is order that is not based on simple repetition, that is, periodicity? How must atoms be arranged in a material so that it diffracts like a quasicrystal? How can we describe aperiodically ordered systems mathematically?

Originally triggered by the - later Nobel prize-winning - discovery of quasicrystals, the investigation of aperiodic order has since become a well-established and rapidly evolving field of mathematical research with close ties to a surprising variety of branches of mathematics and physics.

This book offers an overview of the state of the art in the field of aperiodic order, presented in carefully selected authoritative surveys. It is intended for non-experts with a general background in mathematics, theoretical physics or computer science, and offers a highly accessible source of first-hand information for all those interested in this rich and exciting field. Topics covered include the mathematical theory of diffraction, the dynamical systems of tilings or Delone sets, their cohomology and non-commutative geometry, the Pisot substitution conjecture, aperiodic Schrödinger operators, and connections to arithmetic number theory.



Autorentext
Daniel Lenz, geboren 1978 in Bonn, Studium der Volkswirtschaftslehre in Köln und Rotterdam. Bankkaufmann und Diplom-Volkswirt. Seit 2007 Analyst für Emerging Markets im Bereich Research und Volkswirtschaft der DZ BANK AG in Frankfurt a. M.

Inhalt
Preface.- 1.M. Baake, M. Birkner and U. Grimm: Non-Periodic Systems with Continuous Diffraction Measures .- 2.S. Akiyama, M. Barge, V. Berthé, J.-Y. Lee and A. Siegel: On the Pisot Substitution Conjecture .- 3. L. Sadun: Cohomology of Hierarchical Tilings .- 4.J. Hunton: Spaces of Projection Method Patterns and their Cohomology .- 5.J.-B. Aujogue, M. Barge, J. Kellendonk, D. Lenz: Equicontinuous Factors, Proximality and Ellis Semigroup for Delone Sets .- 6.J. Aliste-Prieto, D. Coronel, M.I. Cortez, F. Durand and S. Petite: Linearly Repetitive Delone Sets .- 7.N. Priebe Frank: Tilings with Infinite Local Complexity .- 8. A.Julien, J. Kellendonk and J. Savinien: On the Noncommutative Geometry of Tilings .- 9.D. Damanik, M. Embree and A. Gorodetski: Spectral Properties of Schrödinger Operators Arising in the Study of Quasicrystals .- 10.S. Puzynina and L.Q. Zamboni: Additive Properties of Sets and Substitutive Dynamics .- 11.J.V. Bellissard: Delone Sets and Material Science: a Program .

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783034809023
    • Editor Johannes Kellendonk, Daniel Lenz, Jean Savinien
    • Sprache Englisch
    • Größe H21mm x B244mm x T163mm
    • Jahr 2015
    • EAN 9783034809023
    • Format Fester Einband
    • ISBN 978-3-0348-0902-3
    • Titel Mathematics of Aperiodic Order
    • Untertitel Progress in Mathematics 309
    • Gewicht 846g
    • Herausgeber Springer, Basel
    • Anzahl Seiten 428
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38