Mathematics of Wave Phenomena

CHF 239.05
Auf Lager
SKU
HAJK55PT860
Stock 1 Verfügbar
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026

Details

Wave phenomena are ubiquitous in nature. Their mathematical modeling, simulation and analysis lead to fascinating and challenging problems in both analysis and numerical mathematics. These challenges and their impact on significant applications have inspired major results and methods about wave-type equations in both fields of mathematics.
The Conference on Mathematics of Wave Phenomena 2018 held in Karlsruhe, Germany, was devoted to these topics and attracted internationally renowned experts from a broad range of fields. These conference proceedings present new ideas, results, and techniques from this exciting research area.

Provides a comprehensive overview of current state-of-the-art by renowned experts Contains a unique combination of perspectives from analysis, numerics, inverse problems and selected applications Deals with aspects of mathematics of wave phenomena

Inhalt

  • Morawetz Inequalities for Water Waves. - Numerical Study of GalerkinCollocation Approximation in Time for the Wave Equation. - Effective Numerical Simulation of the KleinGordonZakharov System in the Zakharov Limit. - Exponential Dichotomies for Elliptic PDE on Radial Domains. - Stability of Slow Blow-Up Solutions for the Critical Focussing Nonlinear Wave Equation on R3+1. - Local Well-Posedness for the Nonlinear Schrödinger Equation in the Intersection of Modulation Spaces Msp,q (Rd ) M,1(Rd ). - FEM-BEM Coupling of Wave-Type Equations: From the Acoustic to the Elastic Wave Equation. - On Hyperbolic Initial-Boundary Value Problems with a Strictly Dissipative Boundary Condition. - On the Spectral Stability of Standing Waves of Nonlocal PT Symmetric Systems. - Sparse Regularizationof Inverse Problems by Operator-Adapted Frame Thresholding. - Soliton Solutions for the LugiatoLefever Equation by Analytical and Numerical Continuation Methods. - Error Analysis of Discontinuous Galerkin Discretizations of a Class of Linear Wave-type Problems. - Ill-posedness of the Third Order NLS with Raman Scattering Term in Gevrey Spaces. - Invariant Measures for the DNLS Equation. - A Global div-curl-Lemma for Mixed Boundary Conditions in Weak Lipschitz Domains. - Existence and Stability of KleinGordon Breathers in the Small-Amplitude Limit. - On Strichartz Estimates from l2-Decoupling and Applications. - On a Limiting Absorption Principle for Sesquilinear Forms with an Application to the Helmholtz Equation in a Waveguide. - Some Inverse Scattering Problems for Perturbations of the Biharmonic Operator.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783030471736
    • Editor Willy Dörfler, Marlis Hochbruck, Dirk Hundertmark, Birgit Schörkhuber, Andreas Rieder, Roland Schnaubelt, Wolfgang Reichel
    • Sprache Englisch
    • Auflage 1st edition 2020
    • Größe H241mm x B160mm x T24mm
    • Jahr 2020
    • EAN 9783030471736
    • Format Fester Einband
    • ISBN 303047173X
    • Veröffentlichung 02.10.2020
    • Titel Mathematics of Wave Phenomena
    • Untertitel Trends in Mathematics
    • Gewicht 670g
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 336
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38