Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Measure and Integration
Details
This textbook provides a thorough introduction to measure and integration theory, fundamental topics of advanced mathematical analysis.
Proceeding at a leisurely, student-friendly pace, the authors begin by recalling elementary notions of real analysis before proceeding to measure theory and Lebesgue integration. Further chapters cover Fourier series, differentiation, modes of convergence, and product measures. Noteworthy topics discussed in the text include Lp spaces, the RadonNikodym Theorem, signed measures, the Riesz Representation Theorem, and the Tonelli and Fubini Theorems.
This textbook, based on extensive teaching experience, is written for senior undergraduate and beginning graduate students in mathematics. With each topic carefully motivated and hints to more than 300 exercises, it is the ideal companion for self-study or use alongside lecture courses.
Supplements the abstract theory with a great amount of motivation, explanations and concrete examples Includes background on metric spaces and mathematical analysis Over 300 exercises with hints
Autorentext
Satish Shirali's research interest are in Banach algebras, elliptic boundary value problems, fuzzy measures, and ***Harkrishan Vasudeva*'s interests are in functional analysis. This is their fourth joint textbook, having previous published An Introduction to Mathematical Analysis (2014), Multivariable Analysis (2011) and Metric Spaces (2006). Shirali is also the author of the book A Concise Introduction to Measure Theory (2018), and Vasudeva is the author of Elements of Hilbert Spaces and Operator Theory (2017) and co-author of An Introduction to Complex Analysis* (2005).
Inhalt
1 Preliminaries.- 2 Measure in Euclidean Space.- 3 Measure Spaces and Integration.- 4 Fourier Series.- 5 Differentiation.- 6 Lebesgue Spaces and Modes of Convergence.- 7 Product Measure and Completion.- 8 Hints.- References.- Index.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783030187460
- Sprache Englisch
- Auflage 1st edition 2019
- Größe H235mm x B155mm x T33mm
- Jahr 2019
- EAN 9783030187460
- Format Kartonierter Einband
- ISBN 3030187462
- Veröffentlichung 23.09.2019
- Titel Measure and Integration
- Autor Harkrishan Lal Vasudeva , Satish Shirali
- Untertitel Springer Undergraduate Mathematics Series
- Gewicht 914g
- Herausgeber Springer International Publishing
- Anzahl Seiten 612
- Lesemotiv Verstehen
- Genre Mathematik