Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Medical Computer Vision: Algorithms for Big Data
Details
This book constitutes the thoroughly refereed post-workshop proceedings of the International Workshop on Medical Computer Vision: Algorithms for Big Data, MCV 2014, held in Cambridge, MA, USA, in September 2019, in conjunction with the 17th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2014. The one-day workshop aimed at exploring the use of modern computer vision technology and "big data" algorithms in tasks such as automatic segmentation and registration, localization of anatomical features and detection of anomalies emphasizing questions of harvesting, organizing and learning from large-scale medical imaging data sets and general-purpose automatic understanding of medical images. The 18 full and 1 short papers presented in this volume were carefully reviewed and selected from 30 submission.
Up-to-date results Fast track conference proceedings State-of-the-art report Includes supplementary material: sn.pub/extras
Inhalt
Automatic segmentation and registration.- Localization of anatomical features.- Detection of anomalies.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319139715
- Auflage 2014
- Editor Bjoern Menze, Georg Langs, Albert Montillo, Dimitris Metaxas, Henning Müller, Shaoting Zhang, Weidong (Tom) Cai, Michael Kelm
- Sprache Englisch
- Genre Anwendungs-Software
- Größe H235mm x B155mm x T13mm
- Jahr 2014
- EAN 9783319139715
- Format Kartonierter Einband
- ISBN 3319139711
- Veröffentlichung 22.12.2014
- Titel Medical Computer Vision: Algorithms for Big Data
- Untertitel International Workshop, MCV 2014, Held in Conjunction with MICCAI 2014, Cambridge, MA, USA, September 18, 2014, Revised Selected Papers
- Gewicht 347g
- Herausgeber Springer International Publishing
- Anzahl Seiten 224
- Lesemotiv Verstehen