Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Medical Computer Vision. Large Data in Medical Imaging
Details
This book constitutes the thoroughly refereed post-workshop proceedings of the Third International Workshop on Medical Computer Vision, MCV 2013, held in Nagoya, Japan, in September 2013 in conjunction with the 16th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2013. The 7 revised full papers and 12 poster papers presented were selected from 25 submissions. They have been organized in topical sections on registration and visualization, segmentation, detection and localization, and features and retrieval. In addition, the volume contains two invited papers describing segmentation task and data set of the VISCERAL benchmark challenge.
Includes supplementary material: sn.pub/extras
Autorentext
Michael Kelm, Dipl.-Kfm. (FH), Geboren 1970, ausgebildeter Bankkaufmann, BWL-Fernstudium an der Hochschule Merseburg (FH), Abschluss 2007 als Diplom-Kaufmann (FH), seit 1999 tätig als Revisor in den Bereichen Aufsichtsrecht, Risikocontrollling, Rechnungslegung und Prüfung von Tochter- und Outsourcinggesellschaften einer Sparkasse.
Inhalt
Overview of the 2013 Workshop on Medical Computer Vision.- Semi-supervised Learning of Nonrigid Deformations for Image Registration.- Local Regression Learning via Forest Classification For 2D/3D Deformable Registration.- Flexible Architecture for Streaming and Visualization of Large Virtual Microscopy Images.- 2D-PCA Shape Models: Application to 3D Reconstruction of the Human Teeth from a Single Image.- Class-Specific Regression Random Forest for Accurate Extraction of Standard Planes from 3D Echocardiography.- Accurate Whole-Brain Segmentation for Alzheimer's Disease Combining an Adaptive Statistical Atlas and Multi-atlas.- Integrated Spatio-Temporal Segmentation of Longitudinal Brain Tumor Imaging Studies.- Robust Mixture-Parameter Estimation for Unsupervised Segmentation of Brain MR Images.- White Matter Supervoxel Segmentation by Axial DP-Means Clustering.- Semantic Context Forests for Learning-Based Knee Cartilage Segmentation in 3D MR Images.- Local Phase-Based Fast Ray Features for Automatic Left Ventricle Apical View Detection in 3D Echocardiography.- Automatic Aorta Detection in 3D Cardiac CT Images Using Bayesian Tracking Method.- Organ Localization Using Joint AP/LAT View Landmark Consensus Detection and Hierarchical Active Appearance Models.- Pectoral Muscle Detection in Digital Breast Tomosynthesis and Mammography.- Multilevel Image Feature Learning for Computer-Aided Diagnosis on Large-Scale Evaluation.- Shape Curvature Histogram: A Shape Feature for Celiac Disease Diagnosis.- 2DBased 3D Volume Retrieval Using Singular Value Decomposition of Detected Regions.- Feature Extraction with Intrinsic Distortion Correction in Celiac Disease Imagery: No Need for Rasterization.- A Novel Shape Feature Descriptor for the Classification of Polyps in HD Colonoscopy.- Multi-Structure Atlas-Based Segmentation Using Anatomical Regions of Interest.- Using Probability Maps for Multi-organ Automatic Segmentation.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319055299
- Auflage 2014
- Editor Bjoern Menze, Georg Langs, Zhuowen Tu, Michael Kelm, Henning Müller, Albert Montillo
- Sprache Englisch
- Genre Anwendungs-Software
- Größe H235mm x B155mm x T14mm
- Jahr 2014
- EAN 9783319055299
- Format Kartonierter Einband
- ISBN 3319055291
- Veröffentlichung 10.04.2014
- Titel Medical Computer Vision. Large Data in Medical Imaging
- Untertitel Third International MICCAI Workshop, MCV 2013, Nagoya, Japan, September 26, 2013, Revised Selected Papers
- Gewicht 376g
- Herausgeber Springer International Publishing
- Anzahl Seiten 244
- Lesemotiv Verstehen