Meromorphic Functions over Non-Archimedean Fields

CHF 115.95
Auf Lager
SKU
FO7C6GSBIQ2
Stock 1 Verfügbar
Geliefert zwischen Di., 03.02.2026 und Mi., 04.02.2026

Details

Nevanlinna theory (or value distribution theory) in complex analysis is so beautiful that one would naturally be interested in determining how such a theory would look in the non Archimedean analysis and Diophantine approximations. There are two "main theorems" and defect relations that occupy a central place in N evanlinna theory. They generate a lot of applications in studying uniqueness of meromorphic functions, global solutions of differential equations, dynamics, and so on. In this book, we will introduce non-Archimedean analogues of Nevanlinna theory and its applications. In value distribution theory, the main problem is that given a holomorphic curve f : C -+ M into a projective variety M of dimension n and a family 01 of hypersurfaces on M, under a proper condition of non-degeneracy on f, find the defect relation. If 01 n is a family of hyperplanes on M = r in general position and if the smallest dimension of linear subspaces containing the image f(C) is k, Cartan conjectured that the bound of defect relation is 2n - k + 1. Generally, if 01 is a family of admissible or normal crossings hypersurfaces, there are respectively Shiffman's conjecture and Griffiths-Lang's conjecture. Here we list the process of this problem: A. Complex analysis: (i) Constant targets: R. Nevanlinna[98] for n = k = 1; H. Cartan [20] for n = k > 1; E. I. Nochka [99], [100],[101] for n > k ~ 1; Shiffman's conjecture partially solved by Hu-Yang [71J; Griffiths-Lang's conjecture (open).

Inhalt
1 Basic facts in p-adic analysis.- 1.1 p-adic numbers.- 1.2 Field extensions.- 1.3 Maximum term of power series.- 1.4 Weierstrass preparation theorem.- 1.5 Newton polygons.- 1.6 Non-Archimedean meromorphic functions.- 2 Nevanlinna theory.- 2.1 Characteristic functions.- 2.2 Growth estimates of meromorphic functions.- 2.3 Two main theorems.- 2.4 Notes on the second main theorem.- 2.5 'abc' conjecture over function fields.- 2.6 Waring's problem over function fields.- 2.7 Exponent of convergence of zeros.- 2.8 Value distribution of differential polynomials.- 3 Uniqueness of meromorphic functions.- 3.1 Adams-Straus' uniqueness theorems.- 3.2 Multiple values of meromorphic functions.- 3.3 Uniqueness polynomials of meromorphic functions.- 3.4 Unique range sets of meromorphic functions.- 3.5 The Frank-Reinders' technique.- 3.6 Some urscm for M(?) and A(?).- 3.7 Some ursim for meromorphic functions.- 3.8 Unique range sets for multiple values.- 4 Differential equations.- 4.1 Malmquist-type theorems.- 4.2 Generalized Malmquist-type theorems.- 4.3 Further results on Malmquist-type theorems.- 4.4 Admissible solutions of some differential equations.- 4.5 Differential equations of constant coefficients.- 5 Dynamics.- 5.1 Attractors and repellers.- 5.2 Riemann-Hurwitz relation.- 5.3 Fixed points of entire functions.- 5.4 Normal families.- 5.5 Montel's theorems.- 5.6 Fatou-Julia theory.- 5.7 Properties of the Julia set.- 5.8 Iteration of z ? zd.- 5.9 Iteration of z ? z2 + c.- 6 Holomorphic curves.- 6.1 Multilinear algebra.- 6.2 The first main theorem of holomorphic curves.- 6.3 The second main theorem of holomorphic curves.- 6.4 Nochka weight.- 6.5 Degenerate holomorphic curves.- 6.6 Uniqueness of holomorphic curves.- 6.7 Second main theorem for hypersurfaces.- 6.8Holomorphic curves into projective varieties.- 7 Diophantine approximations.- 7.1 Schmidt's subspace theorems.- 7.2 Vojta's conjecture.- 7.3 General subspace theorems.- 7.4 Ru-Vojta's subspace theorem for moving targets.- 7.5 Subspace theorem for degenerate mappings.- A The Cartan conjecture for moving targets.- A.1 Non-degenerate holomorphic curves.- A.2 The Steinmetz lemma.- A.3 A defect relation for moving targets.- A.4 The Ru-Stoll techniques.- A.5 Growth of the Steinmetz-Stoll mappings.- A.6 Moving targets in subgeneral position.- A.7 Moving targets in general position.- Symbols.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09789048155460
    • Sprache Englisch
    • Größe H235mm x B155mm x T17mm
    • Jahr 2010
    • EAN 9789048155460
    • Format Kartonierter Einband
    • ISBN 9048155460
    • Veröffentlichung 07.12.2010
    • Titel Meromorphic Functions over Non-Archimedean Fields
    • Autor Pei-Chu Hu , Chung-Chun Yang
    • Untertitel Mathematics and Its Applications 522
    • Gewicht 464g
    • Herausgeber Springer
    • Anzahl Seiten 304
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38