Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Meshfree Methods for Partial Differential Equations V
Details
The numerical treatment of partial differential equations with particle methods and meshfree discretization techniques is an extremely active research field, both in the mathematics and engineering communities. Meshfree methods are becoming increasingly mainstream in various applications. Due to their independence of a mesh, particle schemes and meshfree methods can deal with large geometric changes of the domain more easily than classical discretization techniques. Furthermore, meshfree methods offer a promising approach for the coupling of particle models to continuous models. This volume of LNCSE is a collection of the papers from the proceedings of the Fifth International Workshop on Meshfree Methods, held in Bonn in August 2009. The articles address the different meshfree methods and their use in applied mathematics, physics and engineering. The volume is intended to foster this highly active and exciting area of interdisciplinary research and to present recent advances and findings in this field.
Includes supplementary material: sn.pub/extras
Autorentext
Dr. Michael Griebel ist Ordinarius für Wissenschaftliches Rechnen am Institut für Angewandte Mathematik der Universität in Bonn.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783642162282
- Editor Marc Alexander Schweitzer, Michael Griebel
- Sprache Englisch
- Auflage 2011
- Größe H241mm x B160mm x T20mm
- Jahr 2010
- EAN 9783642162282
- Format Fester Einband
- ISBN 3642162282
- Veröffentlichung 05.11.2010
- Titel Meshfree Methods for Partial Differential Equations V
- Untertitel Lecture Notes in Computational Science and Engineering 79
- Gewicht 588g
- Herausgeber Springer Berlin Heidelberg
- Anzahl Seiten 280
- Lesemotiv Verstehen
- Genre Mathematik