Minimum Action Curves in Degenerate Finsler Metrics

CHF 46.25
Auf Lager
SKU
ACFUBM6KDQ2
Stock 1 Verfügbar
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026

Details

Presenting a study of geometric action functionals (i.e., non-negative functionals on the space of unparameterized oriented rectifiable curves), this monograph focuses on the subclass of those functionals whose local action is a degenerate type of Finsler metric that may vanish in certain directions, allowing for curves with positive Euclidean length but with zero action. For such functionals, criteria are developed under which there exists a minimum action curve leading from one given set to another. Then the properties of this curve are studied, and the non-existence of minimizers is established in some settings.Applied to a geometric reformulation of the quasipotential of Wentzell-Freidlin theory (a subfield of large deviation theory), these results can yield the existence and properties of maximum likelihood transition curves between two metastable states in a stochastic process with small noise.The book assumes only standard knowledge in graduate-level analysis; all higher-level mathematical concepts are introduced along the way.

Explores the non-standard geometric view of the Wentzell-Freidlin theory of rare transition events The general geometric framework may spawn applications outside of probability theory Key results and their explanations are well-separated from the necessary technical proofs, making it easy to quickly use the proven existence criteria in practice Includes many intuitive examples with color illustrations Only a knowledge of graduate level analysis is required; all non-standard concepts are introduced as needed Provides detailed complete proofs that do not require any additional work by the reader to fill the gaps Includes supplementary material: sn.pub/extras

Inhalt

Preface.- Acknowledgements.- Acronyms.- Part I: Results.- Introduction.- Geometric Action Functionals.- Existence of Minimum Action Curves.- Properties of Minimum Action Curves.- Conclusions.- Some Proofs and Remarks.- Part II: Proofs.- Finding Points with Local Minimizers.- Proof of Lemma 6.1.- Part III: Proof of a Technical Lemma.- Proof of Lemma 6.15: Main Arguments.- Proof of Lemma 6.15: Some Technical Details.- Glossary.- Index.- References.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319177526
    • Sprache Englisch
    • Auflage 1st edition 2015
    • Größe H235mm x B155mm x T12mm
    • Jahr 2015
    • EAN 9783319177526
    • Format Kartonierter Einband
    • ISBN 3319177524
    • Veröffentlichung 21.07.2015
    • Titel Minimum Action Curves in Degenerate Finsler Metrics
    • Autor Matthias Heymann
    • Untertitel Existence and Properties
    • Gewicht 318g
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 204
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38