Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Mining Omics Data
Details
Biological studies across all omics fields generate vast amounts of data. To understand these complex data, biologically motivated data mining techniques are indispensable. In this dissertation, biological problems were individually addressed by using solutions from computational sciences. The interactome study identified graph clusters: A parameter-free graph-clustering algorithm was developed using graph compression to find highly interlinked proteins sharing similar characteristics. The lipidome study analyzed co-regulations: To reveal those lipids similarly responding to biological factors, a differential Gaussian Graphical Model was introduced accounting for disease-specificity. The cytome study of single cells aimed at understanding cellular systems: A novel noise robust source separation technique reliably extracted independent components from images describing protein behaviors. The study of peptides required the detection outstanding observations: By assessing regularities, an outlier detection algorithm was based on compression efficacy of independent components. All algorithms fulfilled diverse constraints, but were met with standard correlation and dependency methods.
Autorentext
Nikola Müller studied Bioinformatics in Munich, Germany, and performed her doctoral work in bioinformatics at the Max Planck Institute of Biochemistry. She received her PhD at the Institute for Informatics at the Ludwig-Maximilians-University Munich.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783838135052
- Sprache Englisch
- Größe H220mm x B150mm x T14mm
- Jahr 2013
- EAN 9783838135052
- Format Kartonierter Einband
- ISBN 3838135059
- Veröffentlichung 15.01.2013
- Titel Mining Omics Data
- Autor Nikola Müller
- Untertitel From Correlation to Independence
- Gewicht 346g
- Herausgeber Südwestdeutscher Verlag für Hochschulschriften
- Anzahl Seiten 220
- Genre Informatik