Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Mining Spatio-Temporal Information Systems
Details
Mining Spatio-Temporal Information Systems, an edited volume is composed of chapters from leading experts in the field of Spatial-Temporal Information Systems and addresses the many issues in support of modeling, creation, querying, visualizing and mining. Mining Spatio-Temporal Information Systems is intended to bring together a coherent body of recent knowledge relating to STIS data modeling, design, implementation and STIS in knowledge discovery. In particular, the reader is exposed to the latest techniques for the practical design of STIS, essential for complex query processing.
Mining Spatio-Temporal Information Systems is structured to meet the needs of practitioners and researchers in industry and graduate-level students in Computer Science.
Klappentext
Mining Spatio-Temporal Information Systems, an edited volume is composed of chapters from leading experts in the field of Spatial-Temporal Information Systems and addresses the many issues in support of modeling, creation, querying, visualizing and mining. Mining Spatio-Temporal Information Systems is intended to bring together a coherent body of recent knowledge relating to STIS data modeling, design, implementation and STIS in knowledge discovery. In particular, the reader is exposed to the latest techniques for the practical design of STIS, essential for complex query processing. Mining Spatio-Temporal Information Systems is structured to meet the needs of practitioners and researchers in industry and graduate-level students in Computer Science.
Inhalt
1: Spatio-Temporal Data Mining and Knowledge Discovery: Issues Overview.- 1. Introduction.- 2. Background.- 3. Data.- 4. Data Issues.- 5. Conclusions.- 2: Indexing of Objects on the Move.- 1. Introduction.- 2. Problem Statement and Related Work.- 3. The TPR-Tree.- 4. The REXP-Tree.- 5. Summary of Performance Experiments.- 6. Conclusions.- 3: Efficient Storage of Large Volume Spatial and Temporal Point-Data in an Object-Oriented Database.- 1. Introduction.- 2. The GIDB System.- 3. The Problem Domain.- 4. An Object-Oriented Solution.- 5. Requirements.- 6. Towards a Solution.- 7. The Design.- 8. A Flexible Framework.- 9. Sample Applications.- 10. Evaluation.- 11. Future Developments.- 12. Conclusions.- 4: A Typology of Spatiotemporal Information Queries.- 1. Introduction.- 2. Spatiotemporal Information for the Dynamic World.- 3. A Typology of Spatiotemporal Queries.- 4. Conclusions.- 5: Visual Query of Time-Dependent 3D Weather in a Global Geospatial Environment.- 1. Introduction.- 2. 4D Data Model for the Visual Earth.- 3. Scalable, Hierarchical 3D Data Structure.- 4. Interactive, Accurate Visualization of Nonuniform Data.- 6: STQL A Spatio-Temporal Query Language.- 1. Introduction.- 2. Related Work.- 3. The Data Model.- 4. Querying with Spatio-Temporal Operations.- 5. Visual Querying.- 6. Conclusions.- 7: Tripod: A Spatio-Historical Object Database System.- 1. Introduction.- 2. Case Study: UK National Land Use Database.- 3. The Tripod Object Model.- 4. Architecture.- 5. Related Work.- 6. Conclusions.- 8: Spatio-Temporal Subgroup Discovery.- 1. Introduction: Spatial Subgroup Mining.- 2. Application Example.- 3. Representation of Spatio-Temporal Data and of Spatial Subgroups.- 4. Spatio-Temporal Analyses.- 5. Database Integration.- 6. Conclusions and Future Work.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09781461354161
- Editor Roy Ladner, Mahdi Abdelguerfi, Kevin Shaw
- Sprache Englisch
- Auflage Softcover reprint of the original 1st edition 2002
- Größe H235mm x B155mm x T11mm
- Jahr 2013
- EAN 9781461354161
- Format Kartonierter Einband
- ISBN 1461354161
- Veröffentlichung 22.03.2013
- Titel Mining Spatio-Temporal Information Systems
- Untertitel The Springer International Series in Engineering and Computer Science 699
- Gewicht 289g
- Herausgeber Springer US
- Anzahl Seiten 184
- Lesemotiv Verstehen
- Genre Informatik