Minkowski Bouligand Dimension

CHF 36.60
Auf Lager
SKU
I04QSEGLM95
Stock 1 Verfügbar
Geliefert zwischen Mi., 24.09.2025 und Do., 25.09.2025

Details

In fractal geometry, the Minkowski Bouligand dimension, also known as Minkowski dimension or box-counting dimension, is a way of determining the fractal dimension of a set S in a Euclidean space Rn, or more generally in a metric space (X, d).To calculate this dimension for a fractal S, imagine this fractal lying on an evenly-spaced grid, and count how many boxes are required to cover the set. The box-counting dimension is calculated by seeing how this number changes as we make the grid finer.Suppose that N( ) is the number of boxes of side length required to cover the set. Then the box-counting dimension is defined as:If the limit does not exist then one must talk about the upper box dimension and the lower box dimension which correspond to the upper limit and lower limit respectively in the expression above. In other words, the box-counting dimension is well defined only if the upper and lower box dimensions are equal. The upper box dimension is sometimes called the entropy dimension, Kolmogorov dimension, Kolmogorov capacity or upper Minkowski dimension, while the lower box dimension is also called the lower Minkowski dimension.
Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786130682354
    • Editor Frederic P. Miller, Agnes F. Vandome, John McBrewster
    • Genre Mathematik
    • EAN 9786130682354
    • Format Fachbuch
    • Titel Minkowski Bouligand Dimension
    • Herausgeber Alphascript Publishing
    • Anzahl Seiten 68

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.