Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Missing Data Problems in Machine Learning
Details
Learning, inference, and prediction in the presence of missing data are pervasive problems in machine learning and statistical data analysis. This thesis focuses on the problems of collaborative prediction with non-random missing data and classification with missing features. We begin by presenting and elaborating on the theory of missing data due to Little and Rubin. We place a particular emphasis on the missing at random assumption in the multivariate setting with arbitrary patterns of missing data. We derive inference and prediction methods in the presence of random missing data for a variety of probabilistic models including finite mixture models, Dirichlet process mixture models, and factor analysis.
Autorentext
Robin Parker, degree of Doctor of Philosophy Graduate Department of Computer Science University of Toronto.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783639212280
- Sprache Englisch
- Größe H220mm x B150mm x T10mm
- Jahr 2010
- EAN 9783639212280
- Format Kartonierter Einband (Kt)
- ISBN 978-3-639-21228-0
- Titel Missing Data Problems in Machine Learning
- Autor Robin Parker
- Untertitel Outline and Contributions
- Gewicht 268g
- Herausgeber VDM Verlag Dr. Müller e.K.
- Anzahl Seiten 168
- Genre Informatik