Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Mixed Twistor D-modules
Details
We introduce mixed twistor D-modules and establish their fundamental functorial properties. We also prove that they can be described as the gluing of admissible variations of mixed twistor structures. In a sense, mixed twistor D-modules can be regarded as a twistor version of M. Saito's mixed Hodge modules. Alternatively, they can be viewed as a mixed version of the pure twistor D-modules studied by C. Sabbah and the author. The theory of mixed twistor D-modules is one of the ultimate goals in the study suggested by Simpson's Meta Theorem and it would form a foundation for the Hodge theory of holonomic D-modules which are not necessarily regular singular.
The first book on mixed twistor D-modules Forms a tentative foundation of generalized Hodge theory of holonomic D-modules Represents one of the final goals in the study of mixed twistor structures Includes supplementary material: sn.pub/extras
Inhalt
Introduction.- Preliminary.- Canonical prolongations.- Gluing and specialization of r-triples.- Gluing of good-KMS r-triples.- Preliminary for relative monodromy filtrations.- Mixed twistor D-modules.- Infinitesimal mixed twistor modules.- Admissible mixed twistor structure and variants.- Good mixed twistor D-modules.- Some basic property.- Dual and real structure of mixed twistor D-modules.- Derived category of algebraic mixed twistor D-modules.- Good systems of ramified irregular values.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319100876
- Sprache Englisch
- Auflage 1st edition 2015
- Größe H235mm x B155mm x T28mm
- Jahr 2015
- EAN 9783319100876
- Format Kartonierter Einband
- ISBN 3319100874
- Veröffentlichung 28.08.2015
- Titel Mixed Twistor D-modules
- Autor Takuro Mochizuki
- Untertitel Lecture Notes in Mathematics 2125
- Gewicht 768g
- Herausgeber Springer International Publishing
- Anzahl Seiten 512
- Lesemotiv Verstehen
- Genre Mathematik