Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Mobile Ad Hoc Network Protocols Based on Dissimilarity Metrics
Details
This SpringerBrief presents the design and performance evaluation of communication protocols based on dissimilarity metrics for wireless multihop networks. Dissimilarity metrics are used to infer the network topology based solely on local information to efficiently disseminate packets throughout the network, reducing both redundancy and congestion which is covered in this brief.
The performance evaluation of the proposed communication protocols has been conducted by both meticulous simulation and real experimentation in a wireless multi-hop testbed. The obtained results in this brief corroborate the hypothesis regarding the validity of dissimilarity metrics, which can be used to design efficient communication protocols. This SpringerBrief is a good starting point for advanced-level students studying computer science and electrical engineering, as well as researchers and professionals working in this field.
Inhalt
1 Introduction.- 2 Wireless multi-hop networks.- 3 Communication protocols for multi-hop ad hoc networks.- 4 Dissimilarity metrics.- 5 Probabilistic broadcasting based on dissimilarity metrics 6 Probabilistic broadcasting in VANETs.- 7 Routing in VANETs.- 8 Dissimilarity-based protocols in the DES-Testbed.- 9 Conclusions and future directions.<p
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319627397
- Auflage 1st ed. 2017
- Lesemotiv Verstehen
- Anzahl Seiten 81
- Herausgeber Springer-Verlag GmbH
- Gewicht 226g
- Untertitel SpringerBriefs in Electrical and Computer Engineering
- Autor M. Günes , D. G. Reina , J. M. Garcia Campos , S. L. Toral
- Titel Mobile Ad Hoc Network Protocols Based on Dissimilarity Metrics
- Veröffentlichung 28.09.2017
- ISBN 978-3-319-62739-7
- Format Kartonierter Einband
- EAN 9783319627397
- Jahr 2017
- Größe H235mm x B155mm
- Sprache Englisch