Mobile Internet Security

CHF 177.00
Auf Lager
SKU
18T1ES6T0P8
Stock 1 Verfügbar
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026

Details

This book constitutes revised selected papers of the 8th International Conference on Mobile Internet Security, MobiSec 2024, held in Sapporo, Japan, during December 1719, 2024.

The 28 full papers presented in this volume were carefully reviewed and selected from 93 submissions.

They were grouped into the following topics: Cryptography; Cyber-Physical Systems / IoT Applications in Smart Environments; Identification and Authentication; Machine Learning-Based Security; Network Design and Security.


Inhalt

.- Cryptography.

.- Analysis of Backdoored (Classic) McEliece in a Multi-User Setting.

.- PRNG-Oriented Side-Channel Security Evaluation for TI-AES.

.- A High-Security Image Steganography System Employing Multiple Edge Detectors.

.- Efficient and Secure CSIDH using Relation Lattices.

.- Utilizing LLM Chatbots for Formal Descriptions of Cryptographic Protocols.

.- A Study on Parallel Tuple Sieve Algorithm.

.- A Blockchain-Based Approach for Secure Email Encryption with Variable ECC Key Lengths
Selection.

.- The Amplified Boomerang Attack on ChaCha.

.- Bidirectional Proxy Re-Encryption Based on Isogenies.

.- Cyber-Physical Systems / IoT Applications in Smart Environments.

.- Early Heavy Rain Warning System by Cloud based Micrometeorological Data and Geographical
Conditions with Numerous IoT Sensors.

.- Identification and Authentication.

.- Administration of Environment Aware Deep Learning Based Access Contro.

.- Securing Authentication and Authorization in Computing Continuum.

.- Machine Learning-Based Security.

.- ADL: A Method of Attack Detection with LLM by Assigning Traffic Sequencing in 5G IoT.

.- CAFL: Contrastive Learning and Self-Attention in Federated Learning.

.- A DDoS Attack Detection Method Based on an Ensemble of Small Models for Multi-Layer
Satellite Networks.

.- A Comprehensive Study of Machine Learning Techniques for Malicious URL Detection in
Cybersecurity.

.- A Color-Based Data Poisoning Backdoor Approach for Misleading Adversarial Privacy
Prediction.

.- FLARE: A Blockchain Strategy for Hierarchical Federated Learning Algorithms.

.- An Enhanced Payload Image Steganography Employing Hybrid Edge Detection Technique and
MSB Cover Image.

.- Lightweight Object-detection Model on Edge Devices for Safety and Security Applications.

.- Network Design and Security.

.- QoE-Driven Spot Pricing Schemes For Edge User Allocation Across the Distributed Cloud-Edge
Continuum.

.- A Three-Pronged Approach to Malicious APK: Combining Snort, Wireshark, and Wazuh for
Advanced Threat Management.

.- Enhancing Security with Virtualization and Real-time Communications for Applications on
Autonomous Vehicles.

.- Resilient Multi-Path Aggregation Transmission Mechanism for Bandwidth Enhancement.

.- Stepping-Stone Intrusion Detection and its Development Trend.

.- Toward Correctness by Construction for Network Security Configuration.

.- A Novel Framework for Route Recommendation in Cooperative Vehicle Systems: The SHAFA
Model.

.- Evaluation of a Startup Program Identification for Efficient and Accurate IoT Security
Investigations.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09789819501717
    • Genre Information Technology
    • Editor Hyungrok Jo, Seonghan Shin, Alessio Merlo, Ilsun You
    • Lesemotiv Verstehen
    • Anzahl Seiten 427
    • Größe H235mm x B235mm x T155mm
    • Jahr 2025
    • EAN 9789819501717
    • Format Kartonierter Einband
    • ISBN 978-981-9501-71-7
    • Titel Mobile Internet Security
    • Untertitel The 8th International Conference, MobiSec 2024, Sapporo, Japan, December 17-19, 2024, Revised Selected Papers
    • Herausgeber Springer, Berlin
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38