Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Mod- Convergence
Details
The canonical way to establish the central limit theorem for i.i.d. random variables is to use characteristic functions and Lévy's continuity theorem. This monograph focuses on this characteristic function approach and presents a renormalization theory called mod- convergence. This type of convergence is a relatively new concept with many deep ramifications, and has not previously been published in a single accessible volume. The authors construct an extremely flexible framework using this concept in order to study limit theorems and large deviations for a number of probabilistic models related to classical probability, combinatorics, non-commutative random variables, as well as geometric and number-theoretical objects. Intended for researchers in probability theory, the text is carefully well-written and well-structured, containing a great amount of detail and interesting examples.
First of its kind publication detailing the mod-? convergence method Written by leading experts in probability theory Provides a large number of new results Includes new examples coming from various areas of mathematics such as probability theory, number theory, combinatorics, and random matrix theory Includes supplementary material: sn.pub/extras
Inhalt
Preface.- Introduction.- Preliminaries.- Fluctuations in the case of lattice distributions.- Fluctuations in the non-lattice case.- An extended deviation result from bounds on cumulants.- A precise version of the Ellis-Gärtner theorem.- Examples with an explicit generating function.- Mod-Gaussian convergence from a factorisation of the PGF.- Dependency graphs and mod-Gaussian convergence.- Subgraph count statistics in Erdös-Rényi random graphs.- Random character values from central measures on partitions.- Bibliography.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319468211
- Lesemotiv Verstehen
- Genre Maths
- Auflage 1st edition 2016
- Anzahl Seiten 164
- Herausgeber Springer International Publishing
- Größe H235mm x B155mm x T10mm
- Jahr 2016
- EAN 9783319468211
- Format Kartonierter Einband
- ISBN 3319468219
- Veröffentlichung 16.12.2016
- Titel Mod- Convergence
- Autor Valentin Féray , Ashkan Nikeghbali , Pierre-Loïc Méliot
- Untertitel Normality Zones and Precise Deviations
- Gewicht 260g
- Sprache Englisch