Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Model Predictive control of multi-input multi-output systems
Details
In this work, a novel method is constructed for model predictive control (MPC) of Multi-Input Multi-Output (MIMO) systems. These latter are represented by a discrete-time MIMO ARX model expansion on Laguerre orthonormal bases. The resulting model entitled MIMO ARX-Laguerre model, provides a recursive representation with parameter number reduction. The recursive formulation of the MIMO ARX-Laguerre model is used to obtain the MPC strategy and to synthesizing an adaptive predictive controller of MIMO systems. The adaptive predictive control law is computed based on multi-step-ahead finite-element predictors, identified directly from experimental input/output data. The model is tuned in each iteration by an online identification algorithm of both model parameters and Laguerre poles.
Autorentext
Abdelkader MBAREK received his Ph.D degree from ENIT, Tunisia in 2008, his Habilitation degree from Monastir university in 2020. He is now Assistant professor in Electrical and Computer Engineering at ENIM, Tunisia. His research interests include modeling and identification, predictive control, fault diagnosis, fault tolerant control, etc.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786204204956
- Genre Electrical Engineering
- Sprache Englisch
- Anzahl Seiten 60
- Herausgeber LAP LAMBERT Academic Publishing
- Größe H220mm x B150mm x T4mm
- Jahr 2021
- EAN 9786204204956
- Format Kartonierter Einband
- ISBN 6204204955
- Veröffentlichung 16.09.2021
- Titel Model Predictive control of multi-input multi-output systems
- Autor Abdelkader Mbarek , Tarek Garna , Kais Bouzrara
- Untertitel Model Predictive control of multi-input multi-output systems using reduced complexity ARX-Laguerre MIMO model
- Gewicht 107g