Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Modeling Electromagnetic Fields Scattered by a Buried Cavity
Details
This research investigates the plane-wave scattering from a two-dimensional arbitrarily shaped cavity embedded in an infinite metallic surface that has been covered with a layer or layers of dielectric material, considering both transverse electric and transverse magnetic polarizations. Due to the shape of the cavity, this problem is approached using the finite element method. This approach provides a boundary condition at the opening of the cavity which accounts for the effect of the overlayer(s) while confining the problem to the finite domain of the cavity itself. After determination of the solution for the electric and magnetic fields at the cavity aperture, the strength of the return echo can then be calculated and displayed in a radar cross section. Id addition, numerical verifications and experiments illustrating the efficacy of the approach are provided by comparison to other previously tested methods.
Autorentext
Nicole Pernischova started with a dream of dancing in Zlate Moravce,Slovakia but quickly realized her calling was in mathematics. Nicole completed both her BA and MS degree at Duquesne University in Pittsburgh while keeping dancing as part of her life by performing with the Duquesne Tamburitzans. Currently she works as a Business Analyst.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783639269826
- Sprache Englisch
- Größe H220mm x B150mm x T4mm
- Jahr 2010
- EAN 9783639269826
- Format Kartonierter Einband (Kt)
- ISBN 978-3-639-26982-6
- Titel Modeling Electromagnetic Fields Scattered by a Buried Cavity
- Autor Nicole Pernischova
- Untertitel A Finite Approach to Model Electromagnetic Fields Scattered By a Buried Cavity
- Gewicht 125g
- Herausgeber VDM Verlag Dr. Müller e.K.
- Anzahl Seiten 72
- Genre Mathematik