Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Modeling Infectious Disease Parameters Based on Serological and Social Contact Data
Details
This guide to the latest statistical techniques for estimating the parameters of infectious diseases arises from a groundbreaking collaboration between Hasselt and Antwerp universities in Belgium, and features valuable case studies and software advice.
Mathematical epidemiology of infectious diseases usually involves describing the flow of individuals between mutually exclusive infection states. One of the key parameters describing the transition from the susceptible to the infected class is the hazard of infection, often referred to as the force of infection. The force of infection reflects the degree of contact with potential for transmission between infected and susceptible individuals. The mathematical relation between the force of infection and effective contact patterns is generally assumed to be subjected to the mass action principle, which yields the necessary information to estimate the basic reproduction number, another key parameter in infectious disease epidemiology. It is within this context that the Center for Statistics (CenStat, I-Biostat, Hasselt University) and the Centre for the Evaluation of Vaccination and the Centre for Health Economic Research and Modelling Infectious Diseases (CEV, CHERMID, Vaccine and Infectious Disease Institute, University of Antwerp) have collaborated over the past 15 years. This book demonstrates the past and current research activities of these institutes and can be considered to be a milestone in this collaboration. This book is focused on the application of modern statistical methods and models to estimate infectious disease parameters. We want to provide the readers with software guidance, such as R packages, and with data, as far as they can be made publicly available.
Demonstrates the application of modern statistical methods and models to estimate infectious disease parameters Provides the reader with software guidance and data Uses valuable case studies Includes supplementary material: sn.pub/extras
Inhalt
Mathematical models for infectious diesease.- The static model.- The dynamic model.- The stochastic model.- Implementation of models in MATLAB.- Data sources for modelling infectious diseases.- Estimation from serological data.- Parametric models for teh prevalence and the force of infection.- Non-parametric approaches to model the prevalence and force of infection.- Semi-parametric approaches to model the prevalence and force of infection.- A Bayesian approach.- Modelling the prevalence and the force of infection direction from antibody levels.- Modelling multivariate serological data.- Estimation from other data sources.- Estimating mixing patterns and Ro in a heterogenous population.- Modelling in a homogeneous population.- Modelling in a heterogeneous population.- Modelling AIDS outbreak data.- Modelling hepatitis C among injection drug users.- Modelling dengue.- Modelling bovine herpes virus in cattle.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09781489987969
- Sprache Englisch
- Größe H235mm x B155mm x T18mm
- Jahr 2014
- EAN 9781489987969
- Format Kartonierter Einband
- ISBN 1489987967
- Veröffentlichung 15.10.2014
- Titel Modeling Infectious Disease Parameters Based on Serological and Social Contact Data
- Autor Niel Hens , Ziv Shkedy , Marc Aerts , Christel Faes , Pierre van Damme , Philippe Beutels
- Untertitel A Modern Statistical Perspective
- Gewicht 482g
- Herausgeber Springer
- Anzahl Seiten 316
- Lesemotiv Verstehen
- Genre Mathematik