Modelling of the Nairobi Stock Data using ARCH and Bilinear Models

CHF 47.55
Auf Lager
SKU
IFP10ND829R
Stock 1 Verfügbar
Geliefert zwischen Di., 27.01.2026 und Mi., 28.01.2026

Details

The purpose of this study was to determine the most efficient model between the two models namely, ARCH and bilinear models when applied to stock market data. The data was obtained from the Nairobi Stock Exchange (NSE) for the period between 3 rd June 1996 to 31 st December 2007 for the company share prices while for the NSE 20-share index data was for period between 2 nd March 1998 to 31 st December 2007.The share prices for three companies; Bamburi Cement, National Bank of Kenya and Kenya Airways which were selected at random from each of the three main sectors as categorized in the Nairobi Stock Exchange were used. Specifically, the different extensions of ARCH-type models were utilized with ARMA and bilinear models for modelling the weekly mean of the chosen data set. The model efficiency was determined based on the minimal mean squared error (MSE). The results show that the Bilinear-GARCH model with the normal distribution assumption and the AR-Integrated GARCH (IGARCH) model with student's t-distribution are the best models for modelling volatility in the Nairobi Stock Market data.

Autorentext

Dr. Adolphus Wagala holds a PhD(Probability & Statistics) from the Mathematics Research Centre, AC, Guanajuato, Gto. Mexico. Also known by the acronym CIMAT in spanish (Centro de Invetigación en Matemáticas, AC). He is currently a Lecturer of Mathematics and Statistics at Chuka University, Chuka Kenya.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786139445790
    • Sprache Englisch
    • Größe H220mm x B150mm x T6mm
    • Jahr 2019
    • EAN 9786139445790
    • Format Kartonierter Einband
    • ISBN 6139445795
    • Veröffentlichung 28.01.2019
    • Titel Modelling of the Nairobi Stock Data using ARCH and Bilinear Models
    • Autor Adolphus Wagala
    • Gewicht 143g
    • Herausgeber LAP LAMBERT Academic Publishing
    • Anzahl Seiten 84
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38