Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Modern Numerical Nonlinear Optimization
Details
This book includes a thorough theoretical and computational analysis of unconstrained and constrained optimization algorithms and combines and integrates the most recent techniques and advanced computational linear algebra methods. Nonlinear optimization methods and techniques have reached their maturity and an abundance of optimization algorithms are available for which both the convergence properties and the numerical performances are known. This clear, friendly, and rigorous exposition discusses the theory behind the nonlinear optimization algorithms for understanding their properties and their convergence, enabling the reader to prove the convergence of his/her own algorithms. It covers cases and computational performances of the most known modern nonlinear optimization algorithms that solve collections of unconstrained and constrained optimization test problems with different structures, complexities, as well as those with large-scale real applications.
The book is addressed to all those interested in developing and using new advanced techniques for solving large-scale unconstrained or constrained complex optimization problems. Mathematical programming researchers, theoreticians and practitioners in operations research, practitioners in engineering and industry researchers, as well as graduate students in mathematics, Ph.D. and master in mathematical programming will find plenty of recent information and practical approaches for solving real large-scale optimization problems and applications.
Nonlinear optimization algorithms for solving large-scale unconstrained and constrained optimization applications Optimization methods that are currently the most valuable for solving real-life problems and applications Provides theoretical background which gives insights into how the methods are derived
Autorentext
Neculai Andrei holds a position at the Center for Advanced Modeling and Optimization at the Academy of Romanian Scientists in Bucharest, Romania. Dr. Andrei's areas of interest include mathematical modeling, linear programming, nonlinear optimization, high performance computing, and numerical methods in mathematical programming. In addition to this present volume, Neculai Andrei has published several books with Springer including A Derivative-free Two Level Random Search Method for Unconstrained Optimization (2021), Nonlinear Conjugate Gradient Methods for Unconstrained Optimization (2020), Continuous Nonlinear Optimization for Engineering Applications in GAMS Technology (2017), and Nonlinear Optimization Applications Using the GAMS Technology (2013).
Inhalt
- Introduction.- 2. Fundamentals on unconstrained optimization.-3 . Steepest descent method.- 4. Newton method.- 5. Conjugate gradient methods.- 6. Quasi-Newton methods.- 7. Inexact Newton method.- 8. Trust-region method.- 9. Direct methods for unconstrained optimization.- 10. Constrained nonlinear optimization methods.- 11. Optimality conditions for nonlinear optimization.- 12. Simple bound optimization.- 13. Quadratic programming.- 14. Penalty and augmented Lagrangian.- 15. Sequential quadratic programming.- 16. Generalized reduced gradient with sequential linearization. (CONOPT) - 17. Interior-point methods.- 18. Filter methods.- 19. Interior-point filter line search (IPOPT).- Direct methods for constrained optimization.- 20. Direct methods for constrained optimization.- Appendix A. Mathematical review.- Appendix B. SMUNO collection. Small scale optimization applications.- Appendix C. LACOP collection. Large-scale continuous nonlinear optimization applications.- Appendix D. MINPACK-2 collection. Large-scale unconstrained optimization applications.- References.- Author Index.- Subject Index.
Weitere Informationen
- Allgemeine Informationen
- Sprache Englisch
- Anzahl Seiten 844
- Herausgeber Springer International Publishing
- Gewicht 1554g
- Untertitel Springer Optimization and Its Applications 195
- Autor Neculai Andrei
- Titel Modern Numerical Nonlinear Optimization
- Veröffentlichung 19.10.2023
- ISBN 3031087224
- Format Kartonierter Einband
- EAN 9783031087226
- Jahr 2023
- Größe H254mm x B178mm x T45mm
- Lesemotiv Verstehen
- Auflage 1st edition 2022
- GTIN 09783031087226