Modified Ant Lion Algorithms in Distributed Generations Systems

CHF 40.20
Auf Lager
SKU
1DIEP2UQ87Q
Stock 1 Verfügbar
Geliefert zwischen Mo., 23.02.2026 und Di., 24.02.2026

Details

The aim of this work is to improve the power quality of a radially configured system (RFS) using modified Ant Lion (MALO) algorithms. The size and appropriate location of distributed sources (DS) are determined to ensure system stability and reduce energy losses. This approach ensures that the demand of stochastic loads (DSL) is met without affecting the overall stability of the system. The energy quality and performance (PQP) of the algorithm are evaluated using standard IEEE 14 bus, IEEE 33 bus and IEEE 69 bus tests. Power profiles and regulated voltage profiles after optimal sizing and allocation (OSA) of distributed sources demonstrate that this approach is suitable for optimizing systems when the nature of the demand and load is unknown. An objective function based on system stability and quality constraints (SSC) is used to establish system feasibility and robustness. Four configurations are used in terms of scenarios to assess the reliability of the system and the proposed method (RSPM).

Autorentext

KITMO received a B.E. degree in 2014 and an M.E. degree in 2014, in Electronics, Electrical Engineering and Automation (EEA) from University of Ngaoundere, Cameroon. He is an Assistant professor with the Department of Renewable Energy, National Advanced School of Engineering of Maroua, University of Maroua, P.O. Box 58 Maroua, Cameroon.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786208483203
    • Genre Thermal Engineering
    • Anzahl Seiten 64
    • Herausgeber LAP LAMBERT Academic Publishing
    • Größe H220mm x B150mm
    • Jahr 2025
    • EAN 9786208483203
    • Format Kartonierter Einband
    • ISBN 978-620-8-48320-3
    • Titel Modified Ant Lion Algorithms in Distributed Generations Systems
    • Autor Dr. KITMO , Nicodem NISSO , Noël Djongyang
    • Untertitel Optimization of Distributed Generations using intelligent Techniques
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38