Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Modified K- Medoids Algorithm For Image Segmentation
Details
Clustering as a segmentation technique gives a vector of N measurements describing each pixel or group of pixels (i.e., region) in an image, a similarity of the measurement vectors and therefore their clustering in the N-dimensional measurement space implies similarity of the corresponding pixels or pixel groups. Therefore, clustering in measurement space may be an indicator of similarity of image regions, and may be used for segmentation purposes. This book investigates efficient and effective clustering and soft computing algorithms for image segmentation.The improved algorithm for K-medoids clustering incorporates histogram equalization as its first step to reduce the number of centroids. The algorithm calculates the best optimal medoids and uses them for segmentation to reduce the time complexity without much affecting the intercluster similarity.
Autorentext
B.E. (Computer Science and Engg with 1st Division )and M. Tech.(Computer Technology With Honors)
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783659167454
- Sprache Englisch
- Auflage Aufl.
- Größe H220mm x B150mm x T4mm
- Jahr 2012
- EAN 9783659167454
- Format Kartonierter Einband (Kt)
- ISBN 978-3-659-16745-4
- Titel Modified K- Medoids Algorithm For Image Segmentation
- Autor Amit Yerpude , Sipi Dubey
- Untertitel Application of Clustering in Image Processing
- Gewicht 118g
- Herausgeber LAP Lambert Academic Publishing
- Anzahl Seiten 68
- Genre Informatik