Modular degrees of Elliptic curves

CHF 61.10
Auf Lager
SKU
H1R2A94VA64
Stock 1 Verfügbar
Geliefert zwischen Do., 29.01.2026 und Fr., 30.01.2026

Details

Modular degree is an interesting invariant of elliptic curves. It is computed by variety of methods. After computer calculations, Watkins conjectured that given E over the rational numbers of rank R, 2^R divides (Phi), where (Phi) : X_0(N) to E is the optimal map (up to isomorphism of E) and degree of (Phi) is the modular degree of E. In fact he observed that 2^{R+K} divides the degree of the modular degree and 2^K depends on {W}, where {W}is the group of Atkin-Lehner involutions, the cardinality of {W}=2^{omega(N)}, N is the conductor of the elliptic curve and omega(N) counts the number of distinct prime factors of N. The goal of this thesis is to study this conjecture. We have proved that 2^{R+K} divides the degree of (Phi) would follow from an isomorphism of complete intersection of a universal deformation ring and a Hecke ring, where 2^K is the cardinality of W^{prime}, the cardinality of a certain subgroup of the group of Atkin-Lehner involutions. I attempt to verify 2^{R+K} divides the degree of ({Phi}) for certain Ellipitic Curves E by using a computer algebra package Magma. I have verified when N is squarefree. Computations are in chapter 5.

Autorentext

2011 - 2013, Post Doctoral Fellow, The Institute of Mathematical Sciences, India.2007 - 2010, Ph.D. at Sheffield University, U.K.Thesis Advisor: Dr. Neil Dummigan. 2006 - 2007, M.Phil at Sheffield University, U.K.Awards: EPSRC - BP Dorothy Hodgkin Postgraduate Award to support study towards a Ph.D., U.K.Gold medalist, M.Sc Mathematics, S.R.C.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783659349416
    • Sprache Englisch
    • Größe H220mm x B220mm x T150mm
    • Jahr 2013
    • EAN 9783659349416
    • Format Kartonierter Einband (Kt)
    • ISBN 978-3-659-34941-6
    • Titel Modular degrees of Elliptic curves
    • Autor Srilakshmi Krishnamoorthy
    • Untertitel On a conjecture of Watkins
    • Herausgeber LAP Lambert Academic Publishing
    • Anzahl Seiten 104
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38