Modulus of continuity

CHF 42.60
Auf Lager
SKU
R988HA8U9V0
Stock 1 Verfügbar
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026

Details

High Quality Content by WIKIPEDIA articles! In mathematical analysis, a modulus of continuity is a function omega:[0,infty]to[0,infty] used to measure quantitatively the uniform continuity of functions. So, a function f:ItoR admits as a modulus of continuity if and only if f(x)-f(y) leqomega( x-y ), for all x and y in the domain of f. Since moduli of continuity are required to be infinitesimal at 0, a function turns out to be uniformly continuous if and only if it admits a modulus of continuity. Moreover, relevance to the notion is given by the fact that sets of functions sharing the same modulus of continuity are exactly equicontinuous families. For instance, the modulus (t): = kt describes the k-Lipschitz functions, the moduli (t): = kt describe the Hölder continuity, the modulus omega(t):=kt,(log(1/t)+1) describe the almost Lipschitz class, and so on. In general, the role of is to fix some explicit functional dependence of from in the ( , ) definition of uniform continuity.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131674105
    • Editor Frederic P. Miller, Agnes F. Vandome, John McBrewster
    • EAN 9786131674105
    • Format Kartonierter Einband
    • Titel Modulus of continuity
    • Herausgeber Alphascript Publishing
    • Anzahl Seiten 80
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38