Moving Interfaces and Quasilinear Parabolic Evolution Equations

CHF 226.75
Auf Lager
SKU
KH3T7DO20B6
Stock 1 Verfügbar
Geliefert zwischen Fr., 30.01.2026 und Mo., 02.02.2026

Details

In this monograph, the authors develop a comprehensive approach for the mathematical analysis of a wide array of problems involving moving interfaces. It includes an in-depth study of abstract quasilinear parabolic evolution equations, elliptic and parabolic boundary value problems, transmission problems, one- and two-phase Stokes problems, and the equations of incompressible viscous one- and two-phase fluid flows. The theory of maximal regularity, an essential element, is also fully developed. The authors present a modern approach based on powerful tools in classical analysis, functional analysis, and vector-valued harmonic analysis.

The theory is applied to problems in two-phase fluid dynamics and phase transitions, one-phase generalized Newtonian fluids, nematic liquid crystal flows, Maxwell-Stefan diffusion, and a variety of geometric evolution equations. The book also includes a discussion of the underlying physical and thermodynamic principles governing the equations offluid flows and phase transitions, and an exposition of the geometry of moving hypersurfaces.



Provides a rich source of techniques and results Presents an in-depth and up-to-date exposition of the theory of maximal regularity and its application to quasilinear parabolic equations Demonstrates how the theory is applied to problems involving moving interphases and a variety of geometric evolution equations Includes supplementary material: sn.pub/extras

Inhalt

Preface.- Basic Notations.- General References.- Part I Background.- 1Problems and Strategies.- 2.Tools from Differential Geometry.- Part II Abstract Theory.- 3Operator Theory and Semigroups.- 4.Vector-Valued Harmonic Analysis.- 5.Quasilinear Parabolic Evolution Equations.- Part III Linear Theory.- 6.Elliptic and Parabolic Problems.- 7.Generalized Stokes Problems.- 8.Two-Phase Stokes Problems.- Part IV Nonlinear Problems.- 9.Local Well-Posedness and Regularity.- 10.Linear Stability of Equilibria.- 11.Qualitative Behaviour of the Semiows.- 12.Further Parabolic Evolution Problems.- Biographical Comments.- Outlook and Future Challenges.- References.- List of Figures.- List of Symbols.- Subject Index.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319801964
    • Sprache Englisch
    • Auflage Softcover reprint of the original 1st edition 2016
    • Größe H235mm x B155mm x T34mm
    • Jahr 2018
    • EAN 9783319801964
    • Format Kartonierter Einband
    • ISBN 3319801961
    • Veröffentlichung 07.06.2018
    • Titel Moving Interfaces and Quasilinear Parabolic Evolution Equations
    • Autor Gieri Simonett , Jan Prüss
    • Untertitel Monographs in Mathematics 105
    • Gewicht 943g
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 632
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38