Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Multilabel Classification
Details
This book offers a comprehensive review of multilabel techniques widely used to classify and label texts, pictures, videos and music in the Internet. A deep review of the specialized literature on the field includes the available software needed to work with this kind of data. It provides the user with the software tools needed to deal with multilabel data, as well as step by step instruction on how to use them. The main topics covered are:
• The special characteristics of multi-labeled data and the metrics available to measure them.• The importance of taking advantage of label correlations to improve the results.• The different approaches followed to face multi-label classification.• The preprocessing techniques applicable to multi-label datasets.• The available software tools to work with multi-label data.
This book is beneficial for professionals and researchers in a variety of fields because of the wide range of potential applications for multilabel classification. Besides its multiple applications to classify different types of online information, it is also useful in many other areas, such as genomics and biology. No previous knowledge about the subject is required. The book introduces all the needed concepts to understand multilabel data characterization, treatment and evaluation.
Covers key concepts of multilabel data characterization, treatment, and evaluation Equips the reader with all the software tools needed to handle multilabel data, including step-by-step instructions for use Provides the perfect guide for beginners and practitioners with interest in the topic, as well as experts seeking a comprehensive overview Includes supplementary material: sn.pub/extras
Inhalt
Introduction.- Multilabel Classification.- Case Studies and Metrics.- Transformation based Classifiers.- Adaptation based Classifiers.- Ensemble based Classifiers.- Dimensionality Reduction.- Imbalance in Multilabel Datasets.- Multilabel Software.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319822693
- Sprache Englisch
- Auflage Softcover reprint of the original 1st edition 2016
- Größe H235mm x B155mm x T12mm
- Jahr 2018
- EAN 9783319822693
- Format Kartonierter Einband
- ISBN 3319822691
- Veröffentlichung 22.04.2018
- Titel Multilabel Classification
- Autor Francisco Herrera , María J. del Jesus , Antonio J. Rivera , Francisco Charte
- Untertitel Problem Analysis, Metrics and Techniques
- Gewicht 330g
- Herausgeber Springer International Publishing
- Anzahl Seiten 212
- Lesemotiv Verstehen
- Genre Informatik