MultiMedia Modeling

CHF 112.65
Auf Lager
SKU
92GO1V03VFH
Stock 1 Verfügbar
Geliefert zwischen Do., 25.12.2025 und Fr., 26.12.2025

Details

This book constitutes the refereed proceedings of the 30th International Conference on MultiMedia Modeling, MMM 2024, held in Amsterdam, The Netherlands, during January 29 February 2, 2024. The 112 full papers included in this volume were carefully reviewed and selected from 297 submissions. The MMM conference were organized in topics related to multimedia modelling, particularly: audio, image, video processing, coding and compression; multimodal analysis for retrieval applications, and multimedia fusion methods.

Klappentext

This book constitutes the refereed proceedings of the 30th International Conference on MultiMedia Modeling, MMM 2024, held in Amsterdam, The Netherlands, during January 29 February 2, 2024.The 112 full papers included in this volume were carefully reviewed and selected from 297 submissions. The MMM conference were organized in topics related to multimedia modelling, particularly: audio, image, video processing, coding and compression; multimodal analysis for retrieval applications, and multimedia fusion methods.


Inhalt
Where are Biases? Adversarial Debiasing with Spurious Feature Visualization.- Cross-Modal Hash Retrieval with Category Semantics.- Spatiotemporal Representation Enhanced ViT for Video Recognition.- SCFormer: A Vision Transformer with Split Channel in Sitting Posture Recognition.- Dive into Coarse-to-Fine Strategy in Single Image Deblurring.- TICondition: Expanding Control Capabilities for Text-to-Image Generation with Multi-Modal Conditions.- Enhancing Generative Generalized Zero Shot Learning via Multi-Space Constraints and Adapative Integration.- Joint Image Data Hiding and Rate-Distortion Optimization in Neural Compressed Latent Representations.- GSUNet: A Brain Tumor Segmentation Method Based On 3D Ghost Shuffle U-Net.- ACT: Action-associated and Target-related Representations for Object Navigation.- Foreground Feature Enhancement and Peak & Background Suppression for Fine-Grained Visual Classification.- YOLOv5-SRR: Enhancing YOLOv5 for Effective Underwater Target Detection.- Image Clustering and Generation with HDGMVAE-I.- Car or Bus?" CLearSeg: CLIP-enhanced Discrimination among Resembling Classes for Few-Shot Semantic Segmentation.- PANDA: Prompt-based Context- and Indoor-aware Pretraining for Vision and Language Navigation.- Cross-Modal Semantic Alignment Learning for Text-based Person Search.- Point Cloud Classification via Learnable Memory Bank.- Adversarially Regularized Low-Light Image Enhancement.- Advancing Incremental Few-shot Semantic Segmentation via Semantic-guided Relation Alignment and Adaptation.- PMGCN:Preserving measuring mapping prototype graph calibration network for few-shot learning.- ARE-CAM: An interpretable approach to quantitatively evaluating the adversarial robustness of deep models based on CAM.- SSK-Yolo:Global feature-driven small object detection network for images.- MetaVSR: A Novel Approach to Video Super-Resolution for Arbitrary Magnification.- From Skulls to Faces: A Deep Generative Framework for Realistic 3D Craniofacial Reconstruction.- Structure-aware Adaptive Hybrid Interaction Modeling for Image-Text Matching.- Using Saliency and Cropping to Improve Video Memorability.- Contextual Augmentation with Bias Adaptive for Few-shot VideoObject Segmentation.- A lightweight local attention network for image super resolution.- Domain Adaptation for Speaker Verification Based on Self-SupervisedLearning with Adversarial Training.- Quality Scalable Video Coding based on Neural Representation.- Hierarchical Bi-Directional Temporal Context Mining for ImprovedVideo Compression.- MAMixer: Multivariate Time Series Forecasting via Multi-Axis Mixing.- A Custom GAN-based Robust Algorithm for Medical Image Watermarking.- A Detail-guided Multi-source Fusion Network for Remote Sensing Object Detection.- A Secure and Fair Federated Learning Protocol under the Universal Composability Framework.- Bi-directional Interaction and Dense Aggregation Network for RGB-D Salient Object Detection.- Face Forgery Detection via Texture and Saliency Enhancement.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783031533044
    • Herausgeber Springer
    • Anzahl Seiten 524
    • Lesemotiv Verstehen
    • Genre Software
    • Auflage 1st edition 2024
    • Editor Stevan Rudinac, Alan Hanjalic, Cynthia Liem, Marcel Worring, Björn Þór Jónsson, Bei Liu, Yoko Yamakata
    • Sprache Englisch
    • Gewicht 785g
    • Untertitel 30th International Conference, MMM 2024, Amsterdam, The Netherlands, January 29 - February 2, 2024, Proceedings, Part I
    • Größe H235mm x B155mm x T29mm
    • Jahr 2024
    • EAN 9783031533044
    • Format Kartonierter Einband
    • ISBN 3031533046
    • Veröffentlichung 28.01.2024
    • Titel MultiMedia Modeling

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470