Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Multiscale Multimodal Medical Imaging
Details
This book constitutes the refereed proceedings of the Third International Workshop on Multiscale Multimodal Medical Imaging, MMMI 2022, held in conjunction with MICCAI 2022 in singapore, in September 2022. The 12 papers presented were carefully reviewed and selected from 18 submissions. The MMMI workshop aims to advance the state of the art in multi-scale multi-modal medical imaging, including algorithm development, implementation of methodology, and experimental studies. The papers focus on medical image analysis and machine learning, especially on machine learning methods for data fusion and multi-score learning.
Inhalt
M^2F: Multi-modal and Multi-task Fusion Network for Glioma Diagnosis and Prognosis.- Visual Modalities based Multimodal Fusion for Surgical Phase Recognition.- Cross-scale Attention Guided Multi-instance Learning for Crohn's Disease Diagnosis with Pathological Images.- Vessel Segmentation via Link Prediction of Graph Neural Networks.- A Bagging Strategy-Based Multi-Scale Texture GLCM-CNN Model for Differentiating Malignant from Benign Lesions Using Small Pathologically Proven Dataset.- Liver Segmentation Quality Control in Multi-Sequence MR Studies.- Pattern Analysis of Substantia Nigra in Parkinson Disease by Fifth-Order Tensor Decomposition and Multi-sequence MRI.- Gabor Filter-Embedded U-Net with Transformer-based Encoding for Biomedical Image Segmentation.- Learning-based Detection of MYCN Amplification in Clinical Neuroblastoma Patients: A Pilot Study.- Coordinate Translator for Learning Deformable Medical Image Registration.- Towards Optimal Patch Size in Vision Transformers forTumor Segmentation.- Improve Multi-modal Patch Based Lymphoma Segmentation with Negative Sample Augmentation and Label Guidance on PET/CT scans
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783031188138
- Herausgeber Springer Nature Switzerland
- Anzahl Seiten 140
- Lesemotiv Verstehen
- Genre Software
- Auflage 1st edition 2022
- Editor Xiang Li, Jinglei Lv, Quanzheng Li, Bin Dong, Richard M. Leahy, Yuankai Huo
- Sprache Englisch
- Gewicht 224g
- Untertitel Third International Workshop, MMMI 2022, Held in Conjunction with MICCAI 2022, Singapore, September 22, 2022, Proceedings
- Größe H235mm x B155mm x T8mm
- Jahr 2022
- EAN 9783031188138
- Format Kartonierter Einband
- ISBN 3031188136
- Veröffentlichung 14.10.2022
- Titel Multiscale Multimodal Medical Imaging