Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Multiscale Multimodal Medical Imaging
Details
This book constitutes the refereed proceedings of the First International Workshop on Multiscale Multimodal Medical Imaging, MMMI 2019, held in conjunction with MICCAI 2019 in Shenzhen, China, in October 2019.
The 13 papers presented were carefully reviewed and selected from 18 submissions. The MMMI workshop aims to advance the state of the art in multi-scale multi-modal medical imaging, including algorithm development, implementation of methodology, and experimental studies. The papers focus on medical image analysis and machine learning, especially on machine learning methods for data fusion and multi-score learning.
Inhalt
Multi-Modal Image Prediction via Spatial Hybrid U-Net.- Automatic Segmentation of Liver CT Image Based on Dense Pyramid Network.- OctopusNet: A Deep Learning Segmentation Network for Multi-modal Medical Images.- Neural Architecture Search for Optimizing Deep Belief Network Models of fMRI Data.- Feature Pyramid based Attention for Cervical Image Classification.- Single-scan Dual-tracer Separation Network Based on Pre-trained GRU.- PGU-net+: Progressive Growing of U-net+ for Automated Cervical Nuclei Segmentation.- Automated Classification of Arterioles and Venules for Retina Fundus Images using Dual Deeply-Supervised Network.- Liver Segmentation from Multimodal Images using HED-Mask R-CNN.- aEEG Signal Analysis with Ensemble Learning for Newborn Seizure Detection.- Speckle Noise Removal in Ultrasound Images Using A Deep Convolutional Neural Network and A Specially Designed Loss Function.- Automatic Sinus Surgery Skill Assessment Based on Instrument Segmentation and Tracking in Endoscopic Video.- U-Net Training with Instance-Layer Normalization.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783030379681
- Auflage 1st edition 2020
- Editor Quanzheng Li, Xiang Li, Bin Dong, Richard Leahy
- Sprache Englisch
- Genre Anwendungs-Software
- Größe H235mm x B155mm x T7mm
- Jahr 2019
- EAN 9783030379681
- Format Kartonierter Einband
- ISBN 303037968X
- Veröffentlichung 20.12.2019
- Titel Multiscale Multimodal Medical Imaging
- Untertitel First International Workshop, MMMI 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Proceedings
- Gewicht 195g
- Herausgeber Springer International Publishing
- Anzahl Seiten 120
- Lesemotiv Verstehen