Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Music Through Fourier Space
Details
This book explains the state of the art in the use of the discrete Fourier transform (DFT) of musical structures such as rhythms or scales. In particular the author explains the DFT of pitch-class distributions, homometry and the phase retrieval problem, nil Fourier coefficients and tilings, saliency, extrapolation to the continuous Fourier transform and continuous spaces, and the meaning of the phases of Fourier coefficients.
This is the first textbook dedicated to this subject, and with supporting examples and exercises this is suitable for researchers and advanced undergraduate and graduate students of music, computer science and engineering. The author has made online supplementary material available, and the book is also suitable for practitioners who want to learn about techniques for understanding musical notions and who want to gain musical insights into mathematical problems.
First textbook dedicated to this subject Supported throughout with examples and exercises, and online supplementary material Suitable also for practitioners Includes supplementary material: sn.pub/extras
Autorentext
Emmanuel Amiot teaches mathematics at the Lycée François Arago in Perpignan, he is a researcher in the Laboratoire de Mathématiques et Physique (LAMPS) of Université de Perpignan Via Domitia, and he is a regular collaborator with researchers at the Institut de Recherche et Coordination Acoustique/Musique (IRCAM), Paris. He is a pioneer of the techniques described in this textbook, with considerable research and teaching experience in the related areas, geometry, topology, and applied mathematics.
Inhalt
Discrete Fourier Transform of Distributions.- Homometry and the Phase Retrieval Problem.- Nil Fourier Coefficients and Tilings.- Saliency.- Continuous Spaces, Continuous Fourier Transform.- Phases of Fourier Coefficients.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319455808
- Herausgeber Springer International Publishing
- Anzahl Seiten 224
- Lesemotiv Verstehen
- Genre Software
- Auflage 1st edition 2016
- Sprache Englisch
- Gewicht 506g
- Untertitel Discrete Fourier Transform in Music Theory
- Autor Emmanuel Amiot
- Größe H241mm x B160mm x T18mm
- Jahr 2016
- EAN 9783319455808
- Format Fester Einband
- ISBN 331945580X
- Veröffentlichung 04.11.2016
- Titel Music Through Fourier Space