Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Mutational Analysis
Details
Ordinary differential equations play a central role in science and have been extended to evolution equations in Banach spaces. For many applications, however, it is difficult to specify a suitable normed vector space. Shapes without a priori restrictions, for example, do not have an obvious linear structure. This book generalizes ordinary differential equations beyond the borders of vector spaces with a focus on the well-posed Cauchy problem in finite time intervals. Here are some of the examples: - Feedback evolutions of compact subsets of the Euclidean space - Birth-and-growth processes of random sets (not necessarily convex) - Semilinear evolution equations - Nonlocal parabolic differential equations - Nonlinear transport equations for Radon measures - A structured population model - Stochastic differential equations with nonlocal sample dependence and how they can be coupled in systems immediately - due to the joint framework of Mutational Analysis. Finally, the book offers new tools for modelling.
A broad class of evolution problems handled. Each chapter is quite self-contained so that the reader can select rather freely according to the examples of personal interest. Each example provides a table about its main results and the underlying choice of basic sets, distances etc.- The main points of the general framework are summarized in the introduction so that the reader can get the gist quickly.
Autorentext
Thomas J. Lorenz, Diplom Ökonom, ist Vorstandsvorsitzender der a-m-t management performance ag und erfügt über langjährige Erfahrung im Weiterbildungssektor. Er ist Geschäftsführer einer Akademie für Weiterbildung und seit 1996 Mitglied im Vorstand des Q-Verbandes.
Inhalt
Extending Ordinary Differential Equations to Metric Spaces: Aubin's Suggestion.- Adapting Mutational Equations to Examples in Vector Spaces: Local Parameters of Continuity.- Less Restrictive Conditions on Distance Functions: Continuity Instead of Triangle Inequality.- Introducing Distribution-Like Solutions to Mutational Equations.- Mutational Inclusions in Metric Spaces.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783642124709
- Sprache Englisch
- Auflage 2010
- Größe H235mm x B155mm x T27mm
- Jahr 2010
- EAN 9783642124709
- Format Kartonierter Einband
- ISBN 3642124704
- Veröffentlichung 09.06.2010
- Titel Mutational Analysis
- Autor Thomas Lorenz
- Untertitel A Joint Framework for Cauchy Problems in and Beyond Vector Spaces
- Gewicht 894g
- Herausgeber Springer Berlin Heidelberg
- Anzahl Seiten 532
- Lesemotiv Verstehen
- Genre Mathematik