Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Myocardial Pathology Segmentation Combining Multi-Sequence Cardiac Magnetic Resonance Images
Details
This book constitutes the First Myocardial Pathology Segmentation Combining Multi-Sequence CMR Challenge, MyoPS 2020, which was held in conjunction with the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020, in Lima, Peru, in October 2020. The challenge took place virtually due to the COVID-19 crisis. The 12 full and 4 short papers presented in this volume were carefully reviewed and selected form numerous submissions. This challenge aims not only to benchmark various myocardial pathology segmentation algorithms, but also to cover the topic of general cardiac image segmentation, registration and modeling, and raise discussions for further technical development and clinical deployment.
Inhalt
Stacked BCDU-net with semantic CMR synthesis: application to Myocardial PathologySegmentation challenge.- EfficientSeg: A Simple but Efficient Solution to Myocardial Pathology Segmentation Challenge.- Two-stage Method for Segmentation of the Myocardial Scars and Edema on Multi-sequence Cardiac Magnetic Resonance.- Multi-Modality Pathology Segmentation Framework: Application to Cardiac Magnetic Resonance Images.- Myocardial Edema and Scar Segmentation using a Coarse-to-Fine Framework with Weighted Ensemble.- Exploring ensemble applications for multi-sequence myocardial pathology segmentation.- Max-Fusion U-Net for Multi-Modal Pathology Segmentation with Attention and Dynamic Resampling.- Fully automated deep learning based segmentation of normal, infarcted and edema regions from multiple cardiac MRI sequences.- CMS-UNet: Cardiac Multi-task Segmentation in MRI with a U-shaped Network.- Automatic Myocardial Scar Segmentation from Multi-Sequence Cardiac MRI using Fully Convolutional Densenet with Inception and Squeeze-Excitation Module.- Dual Attention U-net for Multi-Sequence Cardiac MR Images Segmentation.- Accurate Myocardial Pathology Segmentation with Residual U-Net.- Stacked and Parallel U-Nets with Multi-Output for Myocardial Pathology Segmentation.- Dual-path Feature Aggregation Network Combined Multi-layer Fusion for Myocardial Pathology Segmentation with Multi-sequence Cardiac MR.- Cascaded Framework with Complementary CMR Information for Myocardial Pathology Segmentation.- CMRadjustNet: Recognition and standardization of cardiac MRI orientation via multi-tasking learning and deep neural networks.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783030656508
- Auflage 1st edition 2020
- Editor Lei Li, Xiahai Zhuang
- Sprache Englisch
- Genre Anwendungs-Software
- Größe H235mm x B155mm x T11mm
- Jahr 2020
- EAN 9783030656508
- Format Kartonierter Einband
- ISBN 3030656500
- Veröffentlichung 19.12.2020
- Titel Myocardial Pathology Segmentation Combining Multi-Sequence Cardiac Magnetic Resonance Images
- Untertitel First Challenge, MyoPS 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Proceedings
- Gewicht 295g
- Herausgeber Springer International Publishing
- Anzahl Seiten 188
- Lesemotiv Verstehen