Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Neighbourhood Components Analysis
CHF 42.80
Auf Lager
SKU
I3SAD4A5RDD
Geliefert zwischen Do., 05.02.2026 und Fr., 06.02.2026
Details
High Quality Content by WIKIPEDIA articles! Neighbourhood components analysis is an unsupervised learning method for clustering multivariate data into distinct classes according to a given distance metric over the data. Functionally, it serves the same purposes as the k-Nearest Neighbour algorithm, and makes direct use of a related concept termed stochastic nearest neighbours. Neighbourhood components analysis aims at "learning" a distance metric by finding a linear transformation of input data such that the average LOO-classification performance is maximized in the transformed space. The key insight to the algorithm is that a matrix A corresponding to the transformation can be found by defining a differentiable objective function for A, followed by use of an iterative solver such as conjugate gradient descent. One of the benefits of this algorithm is that the number of classes k can be determined as a function of A, up to a scalar constant. This use of the algorithm therefore addresses the issue of model selection.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130492250
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786130492250
- Format Fachbuch
- Titel Neighbourhood Components Analysis
- Herausgeber Betascript Publishing
- Anzahl Seiten 88
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung