Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Neural Connectomics Challenge
Details
This book illustrates the thrust of the scientific community to use machine learning concepts for tackling a complex problem: given time series of neuronal spontaneous activity, which is the underlying connectivity between the neurons in the network? The contributing authors also develop tools for the advancement of neuroscience through machine learning techniques, with a focus on the major open problems in neuroscience.While the techniques have been developed for a specific application, they address the more general problem of network reconstruction from observational time series, a problem of interest in a wide variety of domains, including econometrics, epidemiology, and climatology, to cite only a few.< The book is designed for the mathematics, physics and computer science communities that carry out research in neuroscience problems. The content is also suitable for the machine learning community because it exemplifies how to approach the same problem from different perspectives.
Explains how machine learning tools have the capacity to predict the behavior or response of a complex system Offers tools for the advancement of neuroscience through machine learning techniques Combines elements of mathematics, physics, and computer science research Includes supplementary material: sn.pub/extras
Inhalt
First Connectomics Challenge: From Imaging to Connectivity.- Simple Connectome Inference from Partial Correlation Statistics in Calcium Imaging.- Supervised Neural Network Structure Recovery.- Signal Correlation Prediction Using Convolutional Neural Networks.- Reconstruction of Excitatory Neuronal Connectivity via Metric Score Pooling and Regularization.- Neural Connectivity Reconstruction from Calcium Imaging Signal using Random Forest with Topological Features.- Efficient Combination of Pairwise Feature Networks.- Predicting Spiking Activities in DLS Neurons with Linear-Nonlinear-Poisson Model.- SuperSlicing Frame Restoration for Anisotropic ssTEM and Video Data.- Supplemental Information.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319530697
- Genre Information Technology
- Auflage 1st ed. 2017
- Editor Demian Battaglia, Isabelle Guyon, Vincent Lemaire, Javier Orlandi, Bisakha Ray, Jordi Soriano
- Lesemotiv Verstehen
- Anzahl Seiten 117
- Größe H235mm x B155mm x T17mm
- Jahr 2017
- EAN 9783319530697
- Format Fester Einband
- ISBN 978-3-319-53069-7
- Veröffentlichung 12.05.2017
- Titel Neural Connectomics Challenge
- Untertitel The Springer Series on Challenges in Machine Learning
- Gewicht 361g
- Herausgeber Springer-Verlag GmbH
- Sprache Englisch