Neural Information Processing

CHF 95.55
Auf Lager
SKU
EEL1JFCPHMJ
Stock 1 Verfügbar
Geliefert zwischen Do., 25.12.2025 und Fr., 26.12.2025

Details

The eleven-volume set LNCS 15286-15296 constitutes the refereed proceedings of the 31st International Conference on Neural Information Processing, ICONIP 2024, held in Auckland, New Zealand, in December 2024.
The 318 regular papers presented in the proceedings set were carefully reviewed and selected from 1301 submissions. They focus on four main areas, namely: theory and algorithms; cognitive neurosciences; human-centered computing; and applications.


Inhalt

FreeFlow: A Unified Viewpoint on Diffusion Probabilistic Models via Optimal Transport and Fluid Mechanics.- Optimizing CNNs with Gram Schmidt Non-Iterative Learning for Image Recognition.- Improving Multilingual Speech Recognition with Tucker-compressed Mixture of LoRAs.- MetaFix: Semi-Supervised Model Agnostic Meta-Learning using Consistency Regularization.- Towards Private and Fair Machine Learning: Group-Specific Differentially Private Stochastic Gradient Descent with Threshold Optimization.- LogMoE: Optimizing Mixture of Experts for Log Anomaly Detection via Knowledge Distillation.- Cross-Domain Few-Shot Learning with Equiangular Embedding and Dynamic Adversarial Augmentation.- -Net: An Unsupervised Model for Online Graph Time-Series Denoising.- On Learnable Parameters of Optimal and Suboptimal Deep Learning Models.- Aero-engine Condition-Based Maintenance Planning Using Reinforcement Learning.- Multi-Timescale Processing with Heterogeneous Assembly Echo StateNetworks.- ADERec: Adaptive Data Augmentation Sequence Recommendation Based on Dual Network Architecture.- Pruning neural network parameters using recurrent neural networks.- MA-Mamba: Multi-Agent Reinforcement Learning with State Space Model.- Decentralized Extension for Centralized Multi-Agent Reinforcement Learning via Online Distillation.- Advancing RVFL networks: Robust classification with the HawkEye loss function.- An Enhanced MILP-based Verifier for Adversary Robustness of Neural Networks.- Hide-and-Seek GANs for Generation with Limited Data.- Unsupervised Robust Hypergraph Correlation Hashing for MultimediaRetrieval.- Emotional Atmosphere Soft Label for Emotion Recognition in Conversations.- CCATS: Moving Forward with Class-Conditional Time Series Generation.- M3ixTS: Mixing of Multi-patch and Multi-view For Time Series Forecasting.- CSTFormer: Cross Spatial-Temporal Learning Transformer withDynamic Sign Language Recognition through an Augmented Reality Environment.- MmFormer: A Novel Multi-Scale and Multi-Period Transformer Model for Irregular periodic Network Traffc Prediction.- Time Series Anomaly Detection via Temporal Dependencies and Multivariate Correlations Integrating.- Transformer-Based Long Time Series Forecasting with Decoupled Information Extraction and Information Complementarity.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09789819665815
    • Herausgeber Springer
    • Anzahl Seiten 452
    • Lesemotiv Verstehen
    • Genre Software
    • Editor Mufti Mahmud, Maryam Doborjeh, Kevin Wong, Andrew Chi Sing Leung, Zohreh Doborjeh, M. Tanveer
    • Sprache Englisch
    • Gewicht 680g
    • Untertitel 31st International Conference, ICONIP 2024, Auckland, New Zealand, December 2-6, 2024, Proceedings, Part III
    • Größe H235mm x B155mm x T25mm
    • Jahr 2025
    • EAN 9789819665815
    • Format Kartonierter Einband
    • ISBN 9819665817
    • Veröffentlichung 24.06.2025
    • Titel Neural Information Processing

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470