Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Neural Network-Based State Estimation of Nonlinear Systems
Details
"Neural Network-Based State Estimation of Nonlinear Systems" presents efficient, easy to implement neural network schemes for state estimation, system identification, and fault detection and Isolation with mathematical proof of stability, experimental evaluation, and Robustness against unmolded dynamics, external disturbances, and measurement noises.
Presents both the Linear-in-Parameter Neural Network based observer and the Nonlinear-in-Parameter Neural Network based observer approaches to nonlinear systems Discusses the neural network structure for fault detection actuators using an application to satellite attitude control systems and robotic manipulators Discusses robust sensor and actuator fault detection and estimation Includes supplementary material: sn.pub/extras
Klappentext
This series aims to report new developments in the fields of control and information sciences quickly, informally and at a high level. The type material considered for publication includes:
Preliminary drafts of monographs and advanced textbooks
Lectures on a new field, or presenting a new angle on a classical field
Research reports
Reports of meetings, provided they are a) of exceptional interest and b) devoted to a specific topic. The timeliness of subject material is very important.
Information for Authors
Manuscripts should be written in English and be no less the 100, preferably no more than 500 pages. The manuscript in its final and approved version must be submitted in camera-ready form. Authors are encouraged to use LATEX together with the corresponding Springer LATEX macro packages. The corresponding electronic files are also required for the production process, in paticular the online version. Detailed instructions for authors can be found on the engineering site of our homepage: springer.com/series/642. Manuscripts should be sent to one of the series editors, Professor Dr.-Ing. M. Thomas, Institut für Regelungstechnik, Technische Universität, Appelstraße 11, 30167 Hannover, Germany, or Professor M. Morari, Institut für Automatik, ETH/ETL I 29, Physikstraße 3, 8092 Zürich, Switzerland, or directly to the Engineering Editor, Springer-Verlag, Tiergartenstresße 17, 69121 Heidelberg, Germany.
Inhalt
Neural Network-Based State Estimation Schemes.- Neural Network-Based System Identification Schemes.- An Actuator Fault Detection and Isolation Scheme: Experiments in Robotic Manipulators.- A Robust Actuator Gain Fault Detection and Isolation Scheme.- A Robust Sensor and Actuator Fault Detection and Estimation Approach.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09781441914378
- Auflage 2010 edition
- Sprache Englisch
- Genre Maschinenbau
- Lesemotiv Verstehen
- Anzahl Seiten 154
- Größe H237mm x B158mm x T15mm
- Jahr 2009
- EAN 9781441914378
- Format Kartonierter Einband
- ISBN 978-1-4419-1437-8
- Veröffentlichung 14.12.2009
- Titel Neural Network-Based State Estimation of Nonlinear Systems
- Autor Heidar A Talebi , Farzaneh Abdollahi , Rajni V Patel , Khashayar Khorasani
- Untertitel Application to Fault Detection and Isolation
- Gewicht 270g
- Herausgeber Springer-Verlag GmbH