Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
NLP-Driven Document Representations for Text Categorization
Details
Text Categorization is the task of assigning predefined labels to textual documents. Current research has been focused on using word based representations called bag-of-words (BOW) with strong statistical learners. Few studies have explored the use of more complex Natural Language Processing (NLP) driven representations based on phrases, proper names and word senses. None of these had definitive results on these features? benefits for text categorization problems. This book studies the use of NLP-driven document representations captured at many different levels of language processing, and shows that NLP-driven document representations improve text categorization. A methodology, called ?Empirical Selection Methodology for NLP-driven document representations?, is presented. Methodology helps to select document representations for each category in the categorization problem. The methodology should help Text Categorization researchers as well as researchers working on other classification problems, because it is generalizable, and can produce better instance representations for different learning problems.
Autorentext
Ozgur Yilmazel, Ph.D. Assistant Research Professor at School of Information Studies, Syracuse University and Chief Software Engineer in Center for Natural Language Processing (CNLP). He received his doctorate from Syracuse University Electrical Engineering in April 2006.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783836488419
- Sprache Englisch
- Größe H220mm x B220mm
- Jahr 2013
- EAN 9783836488419
- Format Kartonierter Einband (Kt)
- ISBN 978-3-8364-8841-9
- Titel NLP-Driven Document Representations for Text Categorization
- Autor Ozgur Yilmazel
- Untertitel Empirical Selection of NLP-Driven Document Representations for Text Categorization
- Gewicht 126g
- Herausgeber VDM Verlag Dr. Müller e.K.
- Anzahl Seiten 80
- Genre Informatik