Nodal Reordering Strategies

CHF 61.40
Auf Lager
SKU
SJLHONPFEOH
Stock 1 Verfügbar
Geliefert zwischen Di., 27.01.2026 und Mi., 28.01.2026

Details

The availability of high performance computing
clusters has allowed scientists and engineers to
study more challenging problems. However, new
algorithms need to be developed to take advantage of
the new computer architecture. Since the solution
of linear systems still demands most of the
computational effort in many problems (such as the
approximation of partial differential equation
models) iterative methods and, in particular,
efficient preconditioners need to be developed. In
this study, we consider application of incomplete
LU (ILU) preconditioners for finite element models
to partial differential equations. We study two
implementations of the ILU preconditioner: a
stucture-based method and a threshold-based method.
Since finite elements lead to large, sparse systems,
reordering the node numbers can have a substantial
influence on the effectiveness of these
preconditioners.

Autorentext

Fellow of the Society of Actuaries. Member of the American Academy of Actuaries. MS Mathematics, BS Mathematics, BS Computer Science from Virginia Tech. Tae Kwon Do Blackbelt. Currently working as an actuarial consultant for Mercer in New York City.


Klappentext

The availability of high performance computing clusters has allowed scientists and engineers to study more challenging problems. However, new algorithms need to be developed to take advantage of the new computer architecture. Since the solution of linear systems still demands most of the computational effort in many problems (such as the approximation of partial differential equation models) iterative methods and, in particular, efficient preconditioners need to be developed. In this study, we consider application of incomplete LU (ILU) preconditioners for finite element models to partial differential equations. We study two implementations of the ILU preconditioner: a stucture-based method and a threshold-based method. Since finite elements lead to large, sparse systems, reordering the node numbers can have a substantial influence on the effectiveness of these preconditioners.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783639178197
    • Sprache Englisch
    • Größe H220mm x B220mm
    • Jahr 2009
    • EAN 9783639178197
    • Format Kartonierter Einband (Kt)
    • ISBN 978-3-639-17819-7
    • Titel Nodal Reordering Strategies
    • Autor Peter S. Hou
    • Untertitel To Improve Preconditioning for Finite Element Systems
    • Herausgeber VDM Verlag
    • Anzahl Seiten 100
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38