Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Non-negative Matrix Factorization Techniques
Details
This book collects new results, concepts and further developments of NMF. The open problems discussed include, e.g. in bioinformatics: NMF and its extensions applied to gene expression, sequence analysis, the functional characterization of genes, clustering and text mining etc. The research results previously scattered in different scientific journals and conference proceedings are methodically collected and presented in a unified form. While readers can read the book chapters sequentially, each chapter is also self-contained. This book can be a good reference work for researchers and engineers interested in NMF, and can also be used as a handbook for students and professionals seeking to gain a better understanding of the latest applications of NMF.
Covers the latest cutting edge topics on NMF and emphasis on open problems on NMF Balance on both theory and applications with examples Offers in-depth analysis of NMF topics simply not covered elsewhere Includes most advanced and popular areas of NMF, Also, focuses to broad and comprehensive description of all the core principles of NMF Includes supplementary material: sn.pub/extras
Inhalt
From Binary NMF to Variational Bayes NMF: A Probabilistic Approach.- Non Negative Matrix Factorizations for Intelligent Data Analysis.- Automatic extractive multi-document summarization based on Archetypal Analysis.- Bounded Matrix Low Rank Approximation.- A Modified NMF-based Filter Bank Approach for Enhancement of Speech Data in Non-stationary Noise.- Separation of stellar spectra based on non-negativity and parametric modelling of mixing operator.- NMF in MR Spectroscopy.- Time-Scale Based Segmentation for Degraded PCG Signals Using NMF.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783662517000
- Lesemotiv Verstehen
- Genre Electrical Engineering
- Auflage Softcover reprint of the original 1st edition 2016
- Editor Ganesh R. Naik
- Sprache Englisch
- Anzahl Seiten 204
- Herausgeber Springer Berlin Heidelberg
- Größe H235mm x B155mm x T12mm
- Jahr 2016
- EAN 9783662517000
- Format Kartonierter Einband
- ISBN 3662517000
- Veröffentlichung 23.08.2016
- Titel Non-negative Matrix Factorization Techniques
- Untertitel Advances in Theory and Applications
- Gewicht 318g