Nonlinear Equations for Beams and Degenerate Plates with Piers

CHF 71.85
Auf Lager
SKU
72JVSDG4K3A
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

This book develops a full theory for hinged beams and degenerate plates with multiple intermediate piers with the final purpose of understanding the stability of suspension bridges. New models are proposed and new tools are provided for the stability analysis. The book opens by deriving the PDE's based on the physical models and by introducing the basic framework for the linear stationary problem. The linear analysis, in particular the behavior of the eigenvalues as the position of the piers varies, enables the authors to tackle the stability issue for some nonlinear evolution beam equations, with the aim of determining the best position of the piers within the beam in order to maximize its stability. The study continues with the analysis of a class of degenerate plate models. The torsional instability of the structure is investigated, and again, the optimal position of the piers in terms of stability is discussed. The stability analysis is carried out by means of both analytical tools and numerical experiments. Several open problems and possible future developments are presented. The qualitative analysis provided in the book should be seen as the starting point for a precise quantitative study of more complete models, taking into account the action of aerodynamic forces. This book is intended for a two-fold audience. It is addressed both to mathematicians working in the field of Differential Equations, Nonlinear Analysis and Mathematical Physics, due to the rich number of challenging mathematical questions which are discussed and left as open problems, and to Engineers interested in mechanical structures, since it provides the theoretical basis to deal with models for the dynamics of suspension bridges with intermediate piers. More generally, it may be enjoyable for readers who are interested in the application of Mathematics to real life problems.


Full theory for nonlinear plates with intermediate piers New models for suspension bridges New tools for stability analysis

Autorentext

Maurizio Garrione is Assistant Professor of Mathematical Analysis in the Department of Mathematics of the Politecnico di Milano, Italy. His research focus is in ordinary and partial differential equations, differential models and applications.

Filippo Gazzola is Professor of Mathematical Analysis in the Department of Mathematics of the Politecnico di Milano, Italy. His research focus is in partial differential equations in a broad sense, in calculus of variations and, in particular, in models for suspension bridges.


Inhalt

1 The physical models.- 2 Functional setting and vibrating modes for symmetric beams.- 3 Nonlinear evolution equations for symmetric beams.- 4 Nonlinear evolution equations for degenerate plates.- 5 Final comments and perspectives.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783030302177
    • Sprache Englisch
    • Auflage 1st edition 2019
    • Größe H235mm x B155mm x T7mm
    • Jahr 2019
    • EAN 9783030302177
    • Format Kartonierter Einband
    • ISBN 3030302172
    • Veröffentlichung 13.11.2019
    • Titel Nonlinear Equations for Beams and Degenerate Plates with Piers
    • Autor Filippo Gazzola , Maurizio Garrione
    • Untertitel SpringerBriefs in Applied Sciences and Technology - PoliMI SpringerBriefs
    • Gewicht 195g
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 120
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470