Nonlinear identification using adaptive local linear neuro-fuzzy

CHF 61.35
Auf Lager
SKU
BIFVFC6A9KP
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Fr., 31.10.2025 und Mo., 03.11.2025

Details

Neural networks and fuzzy logic have some common features such as distributed representation of knowledge, ability to handle data with uncertainty and imprecision etc. Fuzzy logic has tolerance for imprecision of data, while neural networks have tolerance for noisy data. A neural network s learning capability provides a good way to adjust expert s knowledge and it automatically generates additional fuzzy rules and membership functions to meet certain specifications. This reduces the design time and cost. On the other hand, the fuzzy logic approach enhances the generalization capability of a neural network by providing more reliable output when extrapolation is needed beyond the limits of the training data. To simplify the design and optimization of fuzzy models, process learning techniques derived from neural networks (so called neuro-fuzzy approaches) can be used.Different architectures of neuro-fuzzy systems have been discussed by a number of researchers. In this research, neuro-fuzzy system networks are deployed and used for the dynamic modeling of a nonlinear MIMO system (heat recovery steam generator (HRSG)) and a permeability prediction process.

Autorentext

Mr. Jamali is a graduate at the Petroleum University of Technology where he serves as Instructor in Control Lab and Commissioning of the Electronic Lab. He is an expert in process control, identification and artificial intelligence, which are the subjects he researches at PUT. He is the author of numerous publications on Nonlinear Identification.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783848411177
    • Sprache Englisch
    • Auflage Aufl.
    • Größe H220mm x B150mm x T6mm
    • Jahr 2012
    • EAN 9783848411177
    • Format Kartonierter Einband (Kt)
    • ISBN 978-3-8484-1117-7
    • Titel Nonlinear identification using adaptive local linear neuro-fuzzy
    • Autor Bagher Jamali , Hooshang Jazayeri-Rad , Mohammad Ali Ghayyem
    • Untertitel Application of nonlinear identification in chemical industry and geoscience
    • Gewicht 179g
    • Herausgeber LAP Lambert Academic Publishing
    • Anzahl Seiten 108
    • Genre Luft- und Raumfahrttechnik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.