Nonlinear Predictive Control Using Wiener Models

CHF 202.00
Auf Lager
SKU
1DQ4GQSPG2G
Stock 1 Verfügbar
Geliefert zwischen Mi., 31.12.2025 und Do., 01.01.2026

Details

This book presents computationally efficient MPC solutions. The classical model predictive control (MPC) approach to control dynamical systems described by the Wiener model uses an inverse static block to cancel the influence of process nonlinearity. Unfortunately, the model's structure is limited, and it gives poor control quality in the case of an imperfect model and disturbances. An alternative is to use the computationally demanding MPC scheme with on-line nonlinear optimisation repeated at each sampling instant.
A linear approximation of the Wiener model or the predicted trajectory is found on-line. As a result, quadratic optimisation tasks are obtained. Furthermore, parameterisation using Laguerre functions is possible to reduce the number of decision variables. Simulation results for ten benchmark processes show that the discussed MPC algorithms lead to excellent control quality. For a neutralisation reactor and a fuel cell, essential advantages ofneural Wiener models are demonstrated.


Presents computationally efficient MPC algorithms for processes described by Wiener models Provides computational efficiency of MPC as a key issue in this book Shows approaches using on-line models or trajectory linearization

Zusammenfassung

"The present book provides computationally efficient MPC (model predictive control) solutions as an alternative for the classical one, which has a limited structure, giving poor control quality in the case of an imperfect model and disturbances. The book is of real interest for all researchers working in control theory, optimization, engineering and economics." (Savin Treanta, zbMATH 1510.93001, 2023)


Inhalt
Introduction to Model Predictive Control.- MPC Algorithms Using Input-Output Wiener Models.- MPC Algorithms Using State-Space Wiener Models.- Conclusions.- Index.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783030838140
    • Lesemotiv Verstehen
    • Genre Electrical Engineering
    • Auflage 1st edition 2022
    • Sprache Englisch
    • Anzahl Seiten 368
    • Herausgeber Springer International Publishing
    • Größe H241mm x B160mm x T26mm
    • Jahr 2021
    • EAN 9783030838140
    • Format Fester Einband
    • ISBN 3030838145
    • Veröffentlichung 22.09.2021
    • Titel Nonlinear Predictive Control Using Wiener Models
    • Autor Maciej Awry Czuk
    • Untertitel Computationally Efficient Approaches for Polynomial and Neural Structures
    • Gewicht 717g

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470