Nth Root

CHF 42.60
Auf Lager
SKU
RND0KATP116
Stock 1 Verfügbar
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026

Details

High Quality Content by WIKIPEDIA articles! Roots are particularly important in the theory of infinite series, where the root test determines the radius of convergence of a power series. Roots can also be defined for complex numbers, and the complex roots of 1 (the roots of unity) play an important role in higher mathematics. Much of Galois theory is concerned with determining which algebraic numbers can be expressed using roots, leading to the famous Abel-Ruffini theorem that a general polynomial of degree five or higher cannot be solved using roots alone. But many, including Leonhard Euler, believe it originates from the letter r, the first letter of the Latin word radix which refers to the same mathematical operation. The symbol was first seen in print without the vinculum (the horizontal bar over the numbers inside the radical symbol) in the year 1525 in Die Coss by Christoff Rudolff, a German mathematician.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786130333423
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • Sprache Englisch
    • Größe H220mm x B150mm x T6mm
    • Jahr 2010
    • EAN 9786130333423
    • Format Kartonierter Einband
    • ISBN 978-613-0-33342-3
    • Titel Nth Root
    • Untertitel Mathematics, Number, Exponentiation, Square Root, Cube Root, Radius of Convergence, Abel-Ruffini Theorem, Galois Theory
    • Gewicht 165g
    • Herausgeber Betascript Publishers
    • Anzahl Seiten 100
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38